Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 10 ] 
Автор Сообщение
 Заголовок сообщения: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 00:56 
Не в сети
Начинающий
Зарегистрирован:
16 авг 2017, 00:48
Сообщений: 5
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Добрый день!

Столкнулся с следующей задачей:

Есть бесконечное количество конвертов. В каждом конверте может быть одна из 5 карт

Вероятности выпадения каждой карты:
Карта 1: 0,6
Карта 2: 0,20
Карта 3: 0,10
Карта 4: 0,07
Карта 5: 0,03

Карты 1, 2, 3 могут выпасть только один раз

Вопрос заключается в следующем, сколько конвертов нужно открыть, чтобы с вероятностью P=0,9 выпала карта №5.

Пересмотрел всего В.Феллера, к сожалению не нашел ничего похожего.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 10:01 
Не в сети
Beautiful Mind
Зарегистрирован:
08 апр 2015, 13:21
Сообщений: 1422
Cпасибо сказано: 37
Спасибо получено:
522 раз в 487 сообщениях
Очков репутации: 76

Добавить очки репутацииУменьшить очки репутации
В условии задачи есть противоречие: с одной стороны - заданы постоянные (не условные вероятности) выпадения каждой из пяти карт, с другой стороны - первые три карты могут выпасть только один раз. В этом случае вероятности выпадения оставшихся карт не могут оставаться теми же самыми.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 10:22 
Не в сети
Начинающий
Зарегистрирован:
16 авг 2017, 00:48
Сообщений: 5
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Да, в этом и суть, что вероятности карт не остаются теми же самыми. При выпадении одной из "одноразовых" карт, вероятность её выпадения делится между оставшимися (для сохранения правила "в полной группе несовместных событий, сумма их вероятностей = 1").

То есть, если мы открыли первый конверт, и попалась карта 1, то при открытии второго конверта, вероятности для остальных карт будут выглядеть как:
Карта 2: 0,20+0,6/4
Карта 3: 0,10+0,6/4
Карта 4: 0,07+0,6/4
Карта 5: 0,03+0,6/4

Проблема в этом и заключается, что возможно огромное количество вариантов последовательностей выпадения карт, а от порядка выпадения первых трех карт, их места в кортеже - сильно зависит изменение вероятностей карты 4 и карт 5:

Например может выпасть сначала карта 1, и тогда вероятности выпадения карт 2-5 сильно изменятся сразу же. Или же могут выпадать: карта4(n раз)карта2 например.

Собственно проблема в выведении формулы вычисления вероятности выпадения карты 5 для n-го открытого конверта. В задачах такого рода обычно или все варианты являются безвозвратными, или ведется расчет для конечного шага (2-го, 3-го)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 11:29 
Не в сети
Light & Truth
Зарегистрирован:
06 дек 2014, 10:11
Сообщений: 3027
Cпасибо сказано: 50
Спасибо получено:
666 раз в 601 сообщениях
Очков репутации: 195

Добавить очки репутацииУменьшить очки репутации
Solahma писал(а):
Пересмотрел всего В.Феллера, к сожалению не нашел ничего похожего.

Просмотрели. А надо было вникать. Все там есть.
Самое элементарное - просчитайте несколько шагов

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 11:35 
Не в сети
Начинающий
Зарегистрирован:
16 авг 2017, 00:48
Сообщений: 5
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
swan писал(а):
Solahma писал(а):
Пересмотрел всего В.Феллера, к сожалению не нашел ничего похожего.

Просмотрели. А надо было вникать. Все там есть.
Самое элементарное - просчитайте несколько шагов


Собственно до третьего шага вероятности вариантов просчитал. Но формула для n-го конверта не выводится.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 11:40 
Не в сети
Light & Truth
Зарегистрирован:
06 дек 2014, 10:11
Сообщений: 3027
Cпасибо сказано: 50
Спасибо получено:
666 раз в 601 сообщениях
Очков репутации: 195

Добавить очки репутацииУменьшить очки репутации
Но вам же не надо до n. Надо до 90%

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 11:49 
Не в сети
Light & Truth
Зарегистрирован:
06 дек 2014, 10:11
Сообщений: 3027
Cпасибо сказано: 50
Спасибо получено:
666 раз в 601 сообщениях
Очков репутации: 195

Добавить очки репутацииУменьшить очки репутации
Если надо до n, то такой совет: можно рассмотреть марковскую цепь со следующими состояниями: нулевое (или выпадали только 4), выпало 1, выпало 2, выпало 3, выпало 1 и 2, выпало 1 и 3, выпало 2 и 3, выпало 1, 2, и 3, выпало 5. Всего 9 получается.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 11:55 
Не в сети
Начинающий
Зарегистрирован:
16 авг 2017, 00:48
Сообщений: 5
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
swan писал(а):
Но вам же не надо до n. Надо до 90%


Но считать варианты после n=3 вручную слегка затруднительно, а вероятность нахождения 5-ой карты растет не так быстро.

Когда у нас с возвратом, все просто, по тому же Кремеру:

Пусть выпадение карты 0,03

P(A1+A2+A3+A4+A5)=1-(1-p)^n
1-(1-p)^n>=P (P=0,9)

пропустим всем известные преобразования

n>=lg(1-P)/lg(1-p)
n>=lg(0,1)/lg(0,97)
n>=76 конвертов

В нашем же случае, при каждом новом вскрытом конверте, мы получаем новые значения вероятности p для карты #5

swan писал(а):
Если надо до n, то такой совет: можно рассмотреть марковскую цепь со следующими состояниями: нулевое (или выпадали только 4), выпало 1, выпало 2, выпало 3, выпало 1 и 2, выпало 1 и 3, выпало 2 и 3, выпало 1, 2, и 3, выпало 5. Всего 9 получается

За идею с марковскими цепями спасибо. Просто есть ощущение что уже существует формула для расчета с частичным возвратом, и не очень хочется изобретать велосипед.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 12:04 
Не в сети
Light & Truth
Зарегистрирован:
06 дек 2014, 10:11
Сообщений: 3027
Cпасибо сказано: 50
Спасибо получено:
666 раз в 601 сообщениях
Очков репутации: 195

Добавить очки репутацииУменьшить очки репутации
Марковские цепи - это первое, что приходит в голову. Тут придется повозиться, чтобы расписать матрицу переходов. немного, минут 10-15, там большинство нулей будет. Но результат гарантирован. А на формулу я бы не надеялся.
Кстати, точно, что вероятности отброшенных карт распределяются равномерно по остальным, а не пропорционально исходным вероятностям?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Выпадение с частичным возвратом
СообщениеДобавлено: 16 авг 2017, 12:23 
Не в сети
Начинающий
Зарегистрирован:
16 авг 2017, 00:48
Сообщений: 5
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
swan писал(а):
Марковские цепи - это первое, что приходит в голову. Тут придется повозиться, чтобы расписать матрицу переходов. немного, минут 10-15, там большинство нулей будет. Но результат гарантирован. А на формулу я бы не надеялся.
Кстати, точно, что вероятности отброшенных карт распределяются равномерно по остальным, а не пропорционально исходным вероятностям?

Да, распределение вероятностей отброшенных карт равномерно по остальным.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Извлечение двух шаров с возвратом одного

в форуме Теория вероятностей

wanderer_id

1

82

23 ноя 2016, 19:51

Выпадение чисел

в форуме Теория вероятностей

terwet

6

297

11 ноя 2013, 19:12

Выпадение определенной комбинации, как посчитать?

в форуме Комбинаторика и Теория вероятностей

Dorius

3

85

05 дек 2016, 23:40


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 23


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved