Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 32 ]  На страницу Пред.  1, 2, 3, 4  След.
Автор Сообщение
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 13:32 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Мне нечего больше добавить.

Прошу прощения , я весь на нервах , сообщение чего-то не отправилось , я его отредактировал а оно ... , там было написано : F(x)- Функция распределения , р(x) - плотность распределения вероятностей !!!!
И это послужило , тому , что вы подставили в 1) формулу. И там же я спросил , чтобы найти плотность распределения вероятностей , нужно заполнить p(x) с промежутками [a;b] и посчитать определенный интеграл ?
____
Очень стыдно , что я лоханулся и как-то по левому отредактировал !

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 14:00 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
... чтобы найти плотность нужно продифференцировать функцию распределения.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 14:14 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Talanov писал(а):
... чтобы найти плотность нужно продифференцировать функцию распределения.

Вот так бы сразу , теперь все ясно . Это ответ ?
--------------------------------------
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 14:38 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Это ответ только для интервала [-2;4].

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 14:52 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Это ответ только для интервала [-2;4].

:puzyr:) Кароче говоря , 1/6 это плотность распределения вероятностей СВ Х и в задаче от меня требовалось найти её ?
И у вас тут , что-то было ? или у меня глюки ? эта синяя фигня напрягает
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 15:25 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Nelo писал(а):
И у вас тут , что-то было ? или у меня глюки ? эта синяя фигня напрягает

Не было у меня никакой синей фигни. И нет.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 15:27 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Nelo писал(а):
1/6 это плотность распределения вероятностей СВ Х и в задаче от меня требовалось найти её ?

Да, только нужно указать ещё значение плотности при x<-2 и x>4.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Talanov "Спасибо" сказали:
Nelo
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 15:36 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Nelo писал(а):
1/6 это плотность распределения вероятностей СВ Х и в задаче от меня требовалось найти её ?

Да, только нужно указать ещё значение плотности при x<-2 и x>4.

Вот так вот , можно ?
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 15:38 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Это ответ только для интервала [-2;4].

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Непрерывные случайные величины # 2
СообщениеДобавлено: 30 сен 2014, 15:47 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Talanov писал(а):
Это ответ только для интервала [-2;4].

вроде понял
f(x)=1/6, если -2<х<=4 , это ?
Я думал , что в шапке достаточно
про
0 если х <= -2
F(x) = (x+2)/(4+2) , если -2 <x <= 4
1 если x >4

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3, 4  След.  Страница 2 из 4 [ Сообщений: 32 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Непрерывные случайные величины

в форуме Теория вероятностей

LZBeth

3

263

06 ноя 2019, 14:40

Непрерывные случайные величины.

в форуме Теория вероятностей

Normack

3

308

19 янв 2018, 17:55

Непрерывные случайные величины

в форуме Математическая статистика и Эконометрика

LeraVRN95

1

371

17 апр 2015, 15:18

Непрерывные случайные величины

в форуме Теория вероятностей

vneval

3

150

11 ноя 2021, 07:36

Двумерные непрерывные случайные величины

в форуме Математическая статистика и Эконометрика

Alina9999

10

490

03 апр 2021, 16:27

Двумерные непрерывные случайные величины

в форуме Теория вероятностей

Alina9999

0

125

03 апр 2021, 16:31

Непрерывные случайные величины. задача

в форуме Теория вероятностей

BARSIHEG

12

1131

29 дек 2015, 22:18

Теория вероятности. Непрерывные случайные величины

в форуме Теория вероятностей

Jennifer

0

175

14 ноя 2018, 12:12

Непрерывные случайные процессы

в форуме Теория вероятностей

log

1

303

19 ноя 2015, 09:43

Случайные величины, дискретные случайные величины

в форуме Теория вероятностей

nomadfix

1

437

05 дек 2017, 14:39


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 12


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved