Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 50 ]  На страницу Пред.  1, 2, 3, 4, 5  След.
Автор Сообщение
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 17:44 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
График строится по точкам. Найдите F(x) для х=0.1; 0.2; 0.3; ...1.9 . Отложите эти точки на плоскости и соедините их между собой.

А про какой график вы говорите про ?
2) построить график функции плотности распределения вероятностей ?
или
4) построить график функции распределения ?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 18:43 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Да разницы нет.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 18:50 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
График строится по точкам. Найдите F(x) для х=0.1; 0.2; 0.3; ...1.9 . Отложите эти точки на плоскости и соедините их между собой.

Т.К. я вообще не знаю , скажите что куда вставлять и сразу рисовать ?Ъ
вы имели ввиду [0;1] [1;2] [2;3] [3;4] [4;5] [5;6] [6;7] [7;8] [9;10]
Понятия не имею о чем вы говорите

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 18:55 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Задайте значения F(x) в виде таблицы:
x y
0 0
0.1 ...
и т.д.
2 1

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 19:04 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Задайте значения F(x) в виде таблицы:
x y
0 0
0.1 ...
и т.д.
2 1

чето я вообще не вьезжаю .... нужно построить таблицу ?
Изображение
Найти Икс нулевое = 0 , игрек нулевое тоже = 0 , и посдавлять точки -1 0 1 2 , получиться парабола
( подставлять в уравнение ) [math]\frac{3}{14}(x^2+x)[/math] ?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 20:05 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Парабола это функция плотности распределения, а вам нужно построить функцию распределения. Вы ее нашли это F(x) интеграл от р(х). Вот график ее и нужно построить. x меняется от 0 до 2. Возьмите шаг 0.1 и найдите значения F(x) для каждого х.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 20:19 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Парабола это функция плотности распределения, а вам нужно построить функцию распределения. Вы ее нашли это F(x) интеграл от р(х). Вот график ее и нужно построить. x меняется от 0 до 2. Возьмите шаг 0.1 и найдите значения F(x) для каждого х.

Если чего-то не знаешь , то и не поймешь о чем говорят.


[math]F(x) = \frac{14}{3}(\frac{x^3}{3}+\frac{x^2}{2})[/math]

я конечно вполне не гений математики ... по моему 3 степень это кубическая (если такая есть ) парабола , типа 2 параболы в которых 2 стороны как одна .(типа того ) + и обычная парабола , тут бомба будет .
брать точки от 0 до 10 и строить её ?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 20:24 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Почему до 10? До 2.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 20:27 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Я еще раз переспрошу , т.к. бомба !!!

вот в это уравнение подставлять вместо иксов 0,1,2 ?

[math]F(x) = \frac{14}{3}(\frac{x^3}{3}+\frac{x^2}{2})[/math]

будут точки (у) и далее с учетом х и у строить график ?



Цитата:
я конечно вполне не гений математики ... по моему 3 степень это кубическая (если такая есть ) парабола , типа 2 параболы в которых 2 стороны как одна .(типа того ) + и обычная парабола , тут бомба будет .
брать точки от 0 до 2 и строить её ?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Закон распределения непрерывной случайно СВ
СообщениеДобавлено: 07 сен 2014, 20:34 
Не в сети
Профи
Зарегистрирован:
01 янв 2014, 16:42
Сообщений: 374
Откуда: Минск
Cпасибо сказано: 21
Спасибо получено:
3 раз в 3 сообщениях
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Talanov писал(а):
Парабола это функция плотности распределения, а вам нужно построить функцию распределения. Вы ее нашли это F(x) интеграл от р(х). Вот график ее и нужно построить. x меняется от 0 до 2. Возьмите шаг 0.1 и найдите значения F(x) для каждого х.

▼ Фигня получилась
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3, 4, 5  След.  Страница 3 из 5 [ Сообщений: 50 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Плотность распределения непрерывной СВ

в форуме Теория вероятностей

Julia1306

5

253

20 дек 2022, 18:54

Найти методом функций распределения закон распределения СВ

в форуме Теория вероятностей

lorancew

2

291

23 июн 2021, 15:55

Функция распределения непрерывной случайной величины

в форуме Комбинаторика и Теория вероятностей

_one_

1

530

28 янв 2016, 20:10

Функция распределения непрерывной СВ с экспонентой и модулем

в форуме Теория вероятностей

mad_math

3

166

16 янв 2022, 09:50

Дана плотность распределения непрерывной случайной величины

в форуме Теория вероятностей

misha27

4

786

07 май 2019, 18:30

Закон распределения

в форуме Теория вероятностей

Sasha9468

1

181

21 окт 2023, 13:00

Закон распределения

в форуме Комбинаторика и Теория вероятностей

Sasha9468

0

131

21 окт 2023, 09:57

Закон распределения

в форуме Теория вероятностей

groinopp

1

293

04 май 2017, 16:47

Закон распределения для СВ

в форуме Теория вероятностей

Warrvin

2

329

22 апр 2022, 18:45

Закон распределения

в форуме Теория вероятностей

vika22

1

183

07 май 2020, 23:27


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 8


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved