Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 29 ]  На страницу Пред.  1, 2, 3  След.
Автор Сообщение
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 12:08 
Не в сети
Beautiful Mind
Зарегистрирован:
18 окт 2013, 09:30
Сообщений: 1217
Откуда: из-за гор.
Cпасибо сказано: 14
Спасибо получено:
135 раз в 126 сообщениях
Очков репутации: 20

Добавить очки репутацииУменьшить очки репутации
Схема решения: Выдвигаем нулевую гипотезу о совпадении закона распределения полученной выборки и заданного закона распределения генеральной совокупности, которую и проверяем с помощью, например, критерия Пирсона (или, на крайняк, критерия Колмогорова, но это гораздо менее надежно).
Гуглим по названиям критериев.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 18:21 
Не в сети
Начинающий
Зарегистрирован:
14 дек 2013, 06:19
Сообщений: 9
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Ребят, так че делать то?

В теме больше флуда, чем советов по решению?

Можете кто-нить описать, что делать поэтапно

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 18:26 
Не в сети
Beautiful Mind
Зарегистрирован:
18 окт 2013, 09:30
Сообщений: 1217
Откуда: из-за гор.
Cпасибо сказано: 14
Спасибо получено:
135 раз в 126 сообщениях
Очков репутации: 20

Добавить очки репутацииУменьшить очки репутации
Я же все написал - применить критерий Пирсона или (что много хуже) критерий Колмогорова. Вас в гугле забанили? :hh:)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 18:33 
Не в сети
Начинающий
Зарегистрирован:
14 дек 2013, 06:19
Сообщений: 9
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
grigoriew-grisha писал(а):
Я же все написал - применить критерий Пирсона или (что много хуже) критерий Колмогорова. Вас в гугле забанили? :hh:)


Нет, не забанили.

А вот этот этап

"Выдвигаем нулевую гипотезу о совпадении закона распределения полученной выборки и заданного закона распределения генеральной совокупности"

Как гуглить ?:)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 18:53 
Не в сети
Beautiful Mind
Зарегистрирован:
18 окт 2013, 09:30
Сообщений: 1217
Откуда: из-за гор.
Cпасибо сказано: 14
Спасибо получено:
135 раз в 126 сообщениях
Очков репутации: 20

Добавить очки репутацииУменьшить очки репутации
Гугли "критерий Пирсона" и кури его, пока не посинеешь. :ROFL:

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 19:10 
Не в сети
Начинающий
Зарегистрирован:
14 дек 2013, 06:19
Сообщений: 9
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Точнее я не понимаю. критерий пирсона используется для выборки, когда есть один х, который может принимать разные значения.

А у нас несколько другая все-таки ситуация. Как тут ваще мат. ожидание посчитать и дисперсию, тип данных совсем другой

И какое значение критерия значимости брать? Обычно берут 0.05.

в общем, помоги с первой частью, пожалуйста.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 19:16 
Не в сети
Начинающий
Зарегистрирован:
14 дек 2013, 06:19
Сообщений: 9
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Или можешь дать ссылку на решение подобной задачи?

Я уже хз скока гугли и задачи свосем другого типа попадаются

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 19:56 
Не в сети
Beautiful Mind
Зарегистрирован:
18 окт 2013, 09:30
Сообщений: 1217
Откуда: из-за гор.
Cпасибо сказано: 14
Спасибо получено:
135 раз в 126 сообщениях
Очков репутации: 20

Добавить очки репутацииУменьшить очки репутации
Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 14 дек 2013, 20:40 
Не в сети
Начинающий
Зарегистрирован:
14 дек 2013, 06:19
Сообщений: 9
Cпасибо сказано: 0
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
grigoriew-grisha писал(а):


Вот так? Решение правильное?

Получаем вывод, что не должно так быть.

Как это правильными словами назвать?Изображение

з.ы. коээфициент К равен количеству строк - 1 да?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Определение правильности распределения системы вероятностей
СообщениеДобавлено: 15 дек 2013, 00:06 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
28 дек 2011, 15:16
Сообщений: 11718
Откуда: Дивногорск
Cпасибо сказано: 798
Спасибо получено:
1994 раз в 1832 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
MightyS писал(а):
Точнее я не понимаю. критерий пирсона используется для выборки, когда есть один х, который может принимать разные значения.
А у нас несколько другая все-таки ситуация. Как тут ваще мат. ожидание посчитать и дисперсию, тип данных совсем другой
И какое значение критерия значимости брать? Обычно берут 0.05.

Критерий Пирсона (хи-квадрат) используется для проверки гипотезы о принадлежности эмпирического распределению к известному. Случайная величина у вас - цвет шариков, это и есть х. Матожидание и дисперсию считать не нужно, гипотетическое распределение вам задано. 0,05 - это уровень значимости, на котором проверяется гипотеза.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3  След.  Страница 2 из 3 [ Сообщений: 29 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Мат. задача на определение вероятностей

в форуме Теория вероятностей

bugrovalexey

10

306

20 фев 2024, 15:46

Определение параметров преобразования системы координат

в форуме Аналитическая геометрия и Векторная алгебра

Misha_White

5

436

19 мар 2019, 07:19

Определение вероятности безотказной работы системы

в форуме Теория вероятностей

UNIQUE

5

825

14 апр 2016, 14:27

распределения вероятностей

в форуме Теория вероятностей

Ciber15

1

194

24 ноя 2018, 13:59

Определение коэффициентов для логнормального распределения

в форуме Пределы числовых последовательностей и функций, Исследования функций

Fireman

7

275

27 ноя 2018, 13:30

Ряд распределения, Теория вероятностей

в форуме Теория вероятностей

anuta1981

1

282

12 июн 2018, 21:28

Плотность распределения вероятностей

в форуме Дискретная математика, Теория множеств и Логика

EugeneWinter

0

228

25 сен 2018, 17:16

Закон распределения вероятностей ДСВ

в форуме Теория вероятностей

Egoradamov315

1

207

07 мар 2022, 08:10

Плотность распределения вероятностей

в форуме Теория вероятностей

dneprovsskin

5

311

19 май 2020, 01:21

Математическая статистика. Определение закона распределения

в форуме Математическая статистика и Эконометрика

mananasaly

2

220

16 янв 2019, 13:24


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 12


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved