Математический форум Math Help PlanetОбсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
![]() ![]() |
Страница 1 из 1 |
[ Сообщений: 2 ] |
|
Автор | Сообщение | |
---|---|---|
Dauletfromast1996 |
|
|
Компактен ли оператор [math](Ax)(t)=x(1)-x(t)\int_{0}^{1}x(s)ds[/math] в пространстве [math]C[0, 1][/math]?
Сначала, пытался доказать, что оператор компактен. Делал это через определение компактного оператора, через теорему Асколи - Арцела, но в итоге ничего не вышло. Да и еще, преподаватель сказал, что оператор не компактен. Потом стал доказывать не компактность через теорему Банаха об обратном операторе(если существует обратный, то оператор не компактен), через теорему И. К. Даугавета, но все безуспешно. Не буду расписывать свои неправильные решения. Помогите решить, хотя бы правильную идею подкиньте. Если до послезавтра не решу, меня отчислят((( |
||
Вернуться к началу | ||
![]() |
wrobel |
|
|
Оператор нелинейный. Сузьте этот оператор на ограниченное множество [math]\{x(t)\in C[0,1]\mid \|x\|\le 10,\quad \int_0^1x(s)ds=1\}[/math] Убедитесь, что образ этого множества, не является относительно компактным
возьмите последовательность функций [math]x_n(t)=\sin(4\pi nt)[/math] при [math]0\le t\le 0,5[/math] и [math]x_n(t)=8t-4[/math] для остальных t |
||
Вернуться к началу | ||
![]() |
![]() ![]() |
Страница 1 из 1 |
[ Сообщений: 2 ] |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
|
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5 |
Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |