Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
| Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
|
Страница 1 из 1 |
[ Сообщений: 6 ] |
|
| Автор | Сообщение | ||
|---|---|---|---|
| telmil |
|
||
|
Почитав лекции у меня сложилось ощущение, что нужно решать эти уравнения матрицей, где: |x1 y1 z1| |x2 y2 z2| |x3 y3 z3| Только вот не пойму, чему будет равняться определить... Еще есть такой вариант решения,можно записать её как СЛУ и решить: x-4y-2z=3; 3x+y+z=-6; -3x+12+6z=-7; Если да, то я решил её методом Гаусса и у меня получилось, что слу не имеет решений. Что дальше то делать? |
|||
| Вернуться к началу | |||
| mad_math |
|
||
|
Вообще-то решать нужно систему
x-4y-2z+3=0, 3x+y+z-6=0, -3x+12+6z-7=0 А она вовсе не эквивалентна той, которую записали вы. При этом и правильная, и неправильная системы имеют решение, причём похоже единственное. |
|||
| Вернуться к началу | |||
| За это сообщение пользователю mad_math "Спасибо" сказали: telmil |
|||
| telmil |
|
|
|
mad_math писал(а): При этом и правильная, и неправильная системы имеют решение, причём похоже единственное. То есть, есть разница при решении если записать так, как я записал между решением той систему которую Вы записали или нет? Просто я решил её через матрицу и у меня вышло, что определитель равен нулю. Но на скок я помню, если это так, то плоскости либо параллельны либо совпадают, что значит точек пересечения нет или их бесконечное количество. На что препод сказал следующее:"Ну и что в данном случае?". |
||
| Вернуться к началу | ||
| mad_math |
|
||
|
telmil писал(а): То есть, есть разница при решении если записать так, как я записал между решением той систему которую Вы записали или нет Решаются они все одинаково, например, методом Крамера.Вопрос в том, правильно ли вы записали уравнение третьей плоскости. |
|||
| Вернуться к началу | |||
| За это сообщение пользователю mad_math "Спасибо" сказали: telmil |
|||
| telmil |
|
|
|
mad_math писал(а): telmil писал(а): То есть, есть разница при решении если записать так, как я записал между решением той систему которую Вы записали или нет Решаются они все одинаково, например, методом Крамера.Вопрос в том, правильно ли вы записали уравнение третьей плоскости. Я там y забыл дописать(( |
||
| Вернуться к началу | ||
| mad_math |
|
||
|
telmil писал(а): Я там y забыл дописать(( Тогда действительно определитель матрицы коэффициентов будет равен 0, так как содержит 2 пропорциональные строки. Решить систему методом Гаусса можно, но уже не нужно. Если посмотреть внимательно на условия взаимного расположения плоскостей в пространстве static.php?p=vzaimnoe-raspolozhenie-ploskostyei , то увидим, что пропорциональность коэффициентов означает параллельность плоскостей. Т.е. две из данных плоскостей параллельны, а третья их пересекает, как известно ещё из школьного курса, по параллельным прямым. Уравнения этих прямых можно записать как систему из уравнений двух соответствующих плоскостей:[math]\left\{\!\begin{aligned}& x-4y-2z+3=0 \\& 3x+y+z-6=0 \end{aligned}\right.[/math] и [math]\left\{\!\begin{aligned}& -3x+12y+6z+3=0 \\& 3x+y+z-6=0 \end{aligned}\right.[/math] Если есть большое желание, можно перейти от этих уравнений к каноническим, но это уже самостоятельно. |
|||
| Вернуться к началу | |||
|
[ Сообщений: 6 ] |
| Похожие темы | Автор | Ответы | Просмотры | Последнее сообщение |
|---|---|---|---|---|
| Задача на пересечение | 1 |
526 |
03 сен 2017, 11:41 |
|
|
Пересечение окружностей
в форуме Геометрия |
4 |
634 |
18 авг 2015, 16:06 |
|
| Пересечение труб | 1 |
277 |
27 фев 2023, 16:59 |
|
| Пучок плоскостей | 1 |
330 |
24 янв 2016, 16:59 |
|
|
Перпендикулярность плоскостей
в форуме Геометрия |
1 |
379 |
13 мар 2015, 00:13 |
|
|
Параллельность плоскостей
в форуме Геометрия |
6 |
383 |
14 дек 2015, 21:49 |
|
|
Перпендикулярность плоскостей
в форуме Геометрия |
2 |
560 |
12 мар 2015, 23:46 |
|
|
Параллельность плоскостей
в форуме Геометрия |
13 |
944 |
11 дек 2014, 18:17 |
|
|
Перпендикулярность плоскостей
в форуме Геометрия |
5 |
1025 |
02 апр 2015, 22:16 |
|
|
Перпендикулярность плоскостей
в форуме Геометрия |
4 |
427 |
02 апр 2015, 23:53 |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5 |
| Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |