Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 15 ]  На страницу 1, 2  След.
Автор Сообщение
 Заголовок сообщения: Составить уравнение плоскости, проходящей через точку
СообщениеДобавлено: 06 фев 2012, 17:10 
Не в сети
Начинающий
Зарегистрирован:
06 фев 2012, 16:42
Сообщений: 17
Cпасибо сказано: 3
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Составьте уравнение плоскости, проходящей через точку А1 перпендикулярно прямой А2А3, если А1(-1;0;2), А2(3;5;4), А3(5;8;3).

Только если ответите,не могли бы Вы показать решение,мне тоже надо чуть-чуть понять,а то я даже примерно не знаю как и интернет мне не помог справиться с этим заданием.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 17:54 
Не в сети
Beautiful Mind
Зарегистрирован:
02 ноя 2011, 17:05
Сообщений: 1329
Откуда: г. Вологда.
Cпасибо сказано: 277
Спасибо получено:
385 раз в 348 сообщениях
Очков репутации: 236

Добавить очки репутацииУменьшить очки репутации
Составим каноническое уравнение прямой [math]A_2A_3[/math].
[math]\frac{x-3}{5-3}=\frac{y-5}{8-5}=\frac{z-4}{3-4}[/math]
[math]\frac{x-3}{2}=\frac{y-5}{3}=\frac{z-2}{-1}[/math].
Уравнение плоскости записывается [math]Ax+By+Cz+D=0[/math].
Условие перпендикулярности прямой и плоскости [math]\frac{A}{m}=\frac{B}{n}=\frac{C}{p}[/math].
Следовательно, [math]\frac{A}{2}=\frac{B}{3}=\frac{C}{-1}[/math].
Пусть [math]C=-1[/math], тогда [math]B=3[/math] и [math]A=2[/math].
Найдём значение [math]D[/math]. Для этого в уравнение плоскости подставим значение точки [math]A_1 (-1;0;2)[/math] и значения [math]A[/math], [math]B[/math] и [math]C[/math].
[math]2\cdot(-1)+3\cdot0+(-1)\cdot2+D=0[/math]
[math]D =4[/math]
В итоге искомое уравнение плоскости [math]2x+3y-z+4=0[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Vadim Shlovikov "Спасибо" сказали:
soldat
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 18:02 
Не в сети
Начинающий
Зарегистрирован:
06 фев 2012, 16:42
Сообщений: 17
Cпасибо сказано: 3
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Вадим,спасибо Вам большое!!!

Может Вы ещё чем поможете?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 18:07 
Не в сети
Начинающий
Зарегистрирован:
06 фев 2012, 16:42
Сообщений: 17
Cпасибо сказано: 3
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Да,а почему z-2 в числителе???

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 18:29 
Не в сети
Beautiful Mind
Зарегистрирован:
02 ноя 2011, 17:05
Сообщений: 1329
Откуда: г. Вологда.
Cпасибо сказано: 277
Спасибо получено:
385 раз в 348 сообщениях
Очков репутации: 236

Добавить очки репутацииУменьшить очки репутации
Извиняемся. Небольшая описка.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 18:39 
Не в сети
Light & Truth
Зарегистрирован:
25 апр 2010, 00:33
Сообщений: 2643
Cпасибо сказано: 171
Спасибо получено:
840 раз в 715 сообщениях
Очков репутации: 253

Добавить очки репутацииУменьшить очки репутации
Vadim Shlovikov писал(а):
Составим каноническое уравнение прямой [math]A_2A_3[/math].
[math]\frac{x-3}{5-3}=\frac{y-5}{8-5}=\frac{z-4}{3-4}[/math]
[math]\frac{x-3}{2}=\frac{y-5}{3}=\frac{z-2}{-1}[/math].
Уравнение плоскости записывается [math]Ax+By+Cz+D=0[/math].
Условие перпендикулярности прямой и плоскости [math]\frac{A}{m}=\frac{B}{n}=\frac{C}{p}[/math].
Следовательно, [math]\frac{A}{2}=\frac{B}{3}=\frac{C}{-1}[/math].
Пусть [math]C=-1[/math], тогда [math]B=3[/math] и [math]A=2[/math].
Найдём значение [math]D[/math]. Для этого в уравнение плоскости подставим значение точки [math]A_1 (-1;0;2)[/math] и значения [math]A[/math], [math]B[/math] и [math]C[/math].
[math]2\cdot(-1)+3\cdot0+(-1)\cdot2+D=0[/math]
[math]D =4[/math]
В итоге искомое уравнение плоскости [math]2x+3y-z+4=0[/math].


Зачем так сложно? Берем разность координат точек А2 и А3 - получаем вектор перпендикулярный искомой плоскости.Далее записываем уравнение этой искомой плоскости. У нас все есть - точка через которую искомая плоскость проходит и вектор ей перпендикулярный :(

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю vvvv "Спасибо" сказали:
Vadim Shlovikov
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 18:53 
Не в сети
Начинающий
Зарегистрирован:
06 фев 2012, 16:42
Сообщений: 17
Cпасибо сказано: 3
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
то есть там z-4,как я понимаю?


vvvv,конечно спасибо и Вам?но если б я только понимал в этом.....

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 19:57 
Не в сети
Beautiful Mind
Зарегистрирован:
02 ноя 2011, 17:05
Сообщений: 1329
Откуда: г. Вологда.
Cпасибо сказано: 277
Спасибо получено:
385 раз в 348 сообщениях
Очков репутации: 236

Добавить очки репутацииУменьшить очки репутации
soldat писал(а):
то есть там z-4,как я понимаю?


vvvv,конечно спасибо и Вам?но если б я только понимал в этом.....

Да, правильно [math]z-4[/math]. На ответ описка не повлияла.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 22:21 
Не в сети
Light & Truth
Зарегистрирован:
25 апр 2010, 00:33
Сообщений: 2643
Cпасибо сказано: 171
Спасибо получено:
840 раз в 715 сообщениях
Очков репутации: 253

Добавить очки репутацииУменьшить очки репутации
soldat писал(а):
составьте уравнение плоскости,проходящей через точку А1 перпендикулярно прямой А2А3 ,если А1(-1;0;2) ,А2(3;5;4) , А3(5;8;3).

Только если ответите,не могли бы Вы показать решение,мне тоже надо чуть-чуть понять,а то я даже примерно не знаю как и интернет мне не помог справиться с этим заданием

Вот так, по-проще.
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю vvvv "Спасибо" сказали:
soldat
 Заголовок сообщения: Re: Задачи на уравнение прямой на плоскости
СообщениеДобавлено: 06 фев 2012, 22:34 
Не в сети
Начинающий
Зарегистрирован:
06 фев 2012, 16:42
Сообщений: 17
Cпасибо сказано: 3
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Спасибо Вам ещё раз VVVV,буду пользоваться этим примером!!!Но тем не мение у меня ещё осталось вопросов по матиматике....

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 15 ]  На страницу 1, 2  След.

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Уравнение плоскости, проходящей через точку параллельно

в форуме Аналитическая геометрия и Векторная алгебра

van

2

280

12 фев 2012, 12:31

Написать уравнение плоскости, проходящей через точку

в форуме Аналитическая геометрия и Векторная алгебра

Exynos

1

629

24 ноя 2013, 22:55

Уравнение плоскости, проходящей через заданную точку

в форуме Аналитическая геометрия и Векторная алгебра

Guma3423

6

110

03 дек 2016, 19:55

Написать уравнение плоскости проходящей через точку

в форуме Аналитическая геометрия и Векторная алгебра

Tanya_Tanya 20

4

730

02 дек 2012, 10:55

Составить уравнение прямой проходящей через точку и

в форуме Аналитическая геометрия и Векторная алгебра

maybe

8

3446

18 окт 2012, 23:51

Составить уравнение плоскости, проходящей через ось ...

в форуме Аналитическая геометрия и Векторная алгебра

Aleksus37

2

908

20 мар 2012, 16:16

Составить уравнение плоскости, проходящей через линию

в форуме Аналитическая геометрия и Векторная алгебра

katechka92

4

2944

19 фев 2012, 23:19

Составить уравнение плоскости, проходящей через прямую

в форуме Аналитическая геометрия и Векторная алгебра

stikets

1

253

27 дек 2012, 17:50

Уравнение прямой, проходящей через точку

в форуме Аналитическая геометрия и Векторная алгебра

NervTokyo3

2

365

21 окт 2013, 19:36

Уравнение прямой, проходящей через точку

в форуме Аналитическая геометрия и Векторная алгебра

Ulianka

2

493

21 авг 2012, 21:41


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot] и гости: 31


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved