Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 9 ] 
Автор Сообщение
 Заголовок сообщения: Разложить вектор
СообщениеДобавлено: 22 сен 2017, 21:32 
Не в сети
Мастер
Зарегистрирован:
12 май 2016, 16:15
Сообщений: 231
Cпасибо сказано: 7
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Разложить вектор [math]\overline{x}[/math](3,-1,1) на сумму двух векторов, один из которых лежит в подпространстве, натянутом на векторы [math]\overline{a}_{1}[/math](0,1,2), [math]\overline{a}_{2}[/math](1,1,1), а другой ортогонален этому пространству. Спасибо.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Разложить вектор
СообщениеДобавлено: 22 сен 2017, 22:03 
Не в сети
Beautiful Mind
Зарегистрирован:
06 июн 2013, 17:17
Сообщений: 1097
Cпасибо сказано: 57
Спасибо получено:
311 раз в 297 сообщениях
Очков репутации: 97

Добавить очки репутацииУменьшить очки репутации
Один способ — это записать [math]\bar{x}=x_1\bar{a}_1+x_2\bar{a}_2+\bar{y}[/math], где [math]\bar{y}[/math] перпендикулярен [math]\bar{a}_1[/math], [math]\bar{a}_2[/math]. Далее умножьте это равенство скалярно на [math]\bar{a}_1[/math] и [math]\bar{a}_2[/math]. Получится система из двух уравнений на [math]x_1[/math], [math]x_2[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Разложить вектор
СообщениеДобавлено: 23 сен 2017, 00:11 
Не в сети
Продвинутый
Зарегистрирован:
12 ноя 2016, 16:04
Сообщений: 96
Cпасибо сказано: 24
Спасибо получено:
24 раз в 23 сообщениях
Очков репутации: 15

Добавить очки репутацииУменьшить очки репутации
Для нахождения продольной компоненты строим единичные векторы: [math]\vec{e_{1} }=\frac{ \vec{a_{1} } }{ \left| \vec{a_{1} } \right| }=\left( 0, \frac{ 1 }{ \sqrt{5} }, \frac{ 2 }{ \sqrt{5} } \right)[/math] и [math]\vec{e_{2} }=\frac{ \vec{a_{2} } }{ \left| \vec{a_{2} } \right| }=\left( \frac{ 1 }{ \sqrt{5} } , \frac{ 1 }{ \sqrt{5} }, \frac{ 1 }{ \sqrt{5} } \right)[/math]. Находим проекции: [math]x_{1}=\vec{x} \cdot \vec{e_{1} }=\frac{ 1 }{ \sqrt{5} }[/math], [math]x_{2}=\vec{x} \cdot \vec{e_{2} }=\frac{ 3 }{ \sqrt{5} }[/math]. Тогда [math]\vec{x_{1} }=x_{1} \cdot \vec{e_{1} }=\left(0,\frac{ 1 }{ 5 }, \frac{ 2 }{ 5 } \right)[/math], [math]\vec{x_{2} }=x_{2} \cdot \vec{e_{2} }=\left(\frac{ 3 }{ 5 } ,\frac{ 3 }{ 5 }, \frac{ 3 }{ 5 } \right)[/math]. Наконец, [math]{\vec{x_{ \parallel } } }=\vec{x_{1} }+\vec{x_{2} }=\left( \frac{ 3 }{ 5 }, \frac{ 4 }{ 5 }, 1 \right)[/math]. [math]\vec{x }=\vec{x_{ \parallel }}+\vec{x_{ \perp } }[/math], поэтому [math]\vec{x_{ \perp }}=\vec{x}-\vec{x_{ \parallel }}=\left( \frac{ 12 }{ 5 }, -\frac{ 9 }{ 5 },0 \right)[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Разложить вектор
СообщениеДобавлено: 23 сен 2017, 00:33 
Не в сети
Beautiful Mind
Зарегистрирован:
06 июн 2013, 17:17
Сообщений: 1097
Cпасибо сказано: 57
Спасибо получено:
311 раз в 297 сообщениях
Очков репутации: 97

Добавить очки репутацииУменьшить очки репутации
Что-то (12, -9, 0) не перпендикулярен (0,1,2) и (1,1,1).

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю 3D Homer "Спасибо" сказали:
Kirill1986
 Заголовок сообщения: Re: Разложить вектор
СообщениеДобавлено: 23 сен 2017, 00:58 
Не в сети
Продвинутый
Зарегистрирован:
12 ноя 2016, 16:04
Сообщений: 96
Cпасибо сказано: 24
Спасибо получено:
24 раз в 23 сообщениях
Очков репутации: 15

Добавить очки репутацииУменьшить очки репутации
Ну, конечно, я ведь неправильно нашел [math]\vec{e_{2} }=\left( \frac{ 1 }{ \sqrt{3} }, \frac{ 1 }{ \sqrt{3} }, \frac{ 1 }{ \sqrt{3} } \right)[/math]. [math]x_{2} =\vec{x} \cdot \vec{e_{2} }=\sqrt{3}[/math]. [math]\vec{x_{2} }=x_{2} \cdot \vec{e_{2} }=\left( 1,1,1 \right)[/math]...

Так, стоп!!! Здесь не сказано, что базис ортогональный! Соответственно, мое решение не проходит... А у меня 4 ночи... Я баеньки пошел. Пусть кто-нибудь за меня потрудится... Если к завтрашнему дню эти семечки не будут расщелканы, то я их дощелкаю. :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Разложить вектор
СообщениеДобавлено: 23 сен 2017, 08:33 
Не в сети
Продвинутый
Зарегистрирован:
12 ноя 2016, 16:04
Сообщений: 96
Cпасибо сказано: 24
Спасибо получено:
24 раз в 23 сообщениях
Очков репутации: 15

Добавить очки репутацииУменьшить очки репутации
kicultanya, Вы немного не дописали условие задачи до конца. Дано ли в условии, что базис, в котором записаны координаты всех векторов, фигурирующих в условии, является ортонормированным? Если нет, то условие следует дополнить заданием матрицы Грама базисной системы векторов.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Разложить вектор
СообщениеДобавлено: 23 сен 2017, 10:29 
Не в сети
Мастер
Зарегистрирован:
12 май 2016, 16:15
Сообщений: 231
Cпасибо сказано: 7
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
kicultanya писал(а):
Разложить вектор [math]\overline{x}[/math](3,-1,1) на сумму двух векторов, один из которых лежит в подпространстве, натянутом на векторы [math]\overline{a}_{1}[/math](0,1,2), [math]\overline{a}_{2}[/math](1,1,1), а другой ортогонален этому пространству. Спасибо.

Это все условие.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Разложить вектор
СообщениеДобавлено: 23 сен 2017, 14:00 
Не в сети
Продвинутый
Зарегистрирован:
12 ноя 2016, 16:04
Сообщений: 96
Cпасибо сказано: 24
Спасибо получено:
24 раз в 23 сообщениях
Очков репутации: 15

Добавить очки репутацииУменьшить очки репутации
kicultanya, в таком случае я гарантированно говорю Вам, что в условие некорректно. Преподаватели ВУЗов частенько допускают подобные ошибки в условиях, если их задачи не проходят рецензирование, как у всех выпускаемых учебников-задачников. Нижеприводимое решение справедливо в предположении, что базис является ортонормированным.
[math]\vec{e_{1} }=\frac{ \vec{a_{1} } }{\left| \vec{a_{1} } \right| }=\left( 0, \frac{ 1 }{ \sqrt{5} },\frac{ 2 }{ \sqrt{5} } \right)[/math], [math]\vec{e_{2} }=\frac{ \vec{a_{2} } }{\left| \vec{a_{2} } \right| }=\left(\frac{ 1 }{ \sqrt{3} } , \frac{ 1 }{ \sqrt{3} },\frac{ 1 }{ \sqrt{3} } \right)[/math].
Строим вектор [math]\vec{e_{3}^{'}} =\vec{e_{1} } \times \vec{e_{2} }= \begin{vmatrix} \vec{e_{x} } & \vec{e_{y} } & \vec{e_{z} } \\ 0 & \frac{ 1 }{ \sqrt{5} } & \frac{ 2 }{ \sqrt{5} } \\ \frac{ 1 }{ \sqrt{3} } & \frac{ 1 }{ \sqrt{3} } & \frac{ 1 }{ \sqrt{3} } \end{vmatrix}=\left( -\frac{ 1 }{ \sqrt{15} }, \frac{ 2 }{ \sqrt{15} }, -\frac{ 1 }{ \sqrt{15} } \right)[/math] и нормируем его: [math]\vec{e_{3} }=\frac{\vec{e_{3}^{'}}}{ \left| \vec{e_{3}^{'}} \right| }=\left( -\frac{ 1 }{ \sqrt{6}}, \sqrt{\frac{ 2 }{ 3 } } ,-\frac{ 1 }{ \sqrt{6}} \right)[/math].
Тогда [math]x_{ \perp }=\vec{x} \cdot \vec{e_{3} }=-\sqrt{6}[/math], [math]\vec{x_{ \perp }}=x_{ \perp } \cdot \vec{e_{3} }=\left( 1,-2,1 \right)[/math].
[math]\vec{x_{ \parallel } }=\vec{x}- \vec{x_{ \perp }}=\left( 2, 1, 0 \right)[/math].
ОТВЕТ:[math]\vec{x_{ \parallel } }=\left( 2, 1, 0 \right)[/math], [math]\vec{x_{ \perp }}=\left( 1,-2,1 \right)[/math].

Кстати, в моих предыдущих ответах многое написано правильно, но логика получения результата неверна, поскольку, вообще говоря, [math]\vec{x_{ \parallel } } \ne \vec{x_{1}} + \vec{x_{2}}[/math] (!)

Удачи!

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Разложить вектор
СообщениеДобавлено: 23 сен 2017, 17:16 
Не в сети
Продвинутый
Зарегистрирован:
12 ноя 2016, 16:04
Сообщений: 96
Cпасибо сказано: 24
Спасибо получено:
24 раз в 23 сообщениях
Очков репутации: 15

Добавить очки репутацииУменьшить очки репутации
Нет, все же я немного поспешил... Задача поставлена корректно! Указанные в условии векторы все взяты из пространства [math]\mathbb{R} ^{3}[/math]. Все координаты (числа в скобках) указаны относительно ортонормированного базиса [math]\vec{e_{1} }=\left( 1,0,0 \right)[/math], [math]\vec{e_{2} }=\left( 0,1,0 \right)[/math], [math]\vec{e_{3} }=\left( 0,0,1 \right)[/math]. Мое замечание было бы верно, если бы не было прямого указания на пространство [math]\mathbb{R} ^{3}[/math], и векторы записывались бы в виде [math]\vec{v}= v_{1}\vec{e_{1}}+v_{2}\vec{e_{2}}+v_{3}\vec{e_{3}}[/math]. Вот тогда на базисные векторы [math]\vec{e_{1} }[/math], [math]\vec{e_{2} }[/math], [math]\vec{e_{3} }[/math] действительно следовало бы наложить ограничение ортонормированности: [math]\vec{e_{i} } \cdot \vec{e_{j} }= \delta _{ij}[/math], [math]i, j \in \left\{ 1,2,3 \right\}[/math]. Но здесь оно уже выполнено. Ведь в пространстве [math]\mathbb{R} ^{3}[/math] по определению [math]\vec{x} \cdot \vec{y}=\sum\limits_{i=1}^{3} x_{i}y_{i}[/math], где [math]\vec{x}=\left( x_{1},x_{2},x_{3} \right)[/math], [math]\vec{y}=\left( y_{1},y_{2},y_{3} \right)[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 9 ] 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Разложить вектор DK

в форуме Аналитическая геометрия и Векторная алгебра

Dmelnikov

6

130

15 дек 2015, 12:10

разложить вектор

в форуме Аналитическая геометрия и Векторная алгебра

Sancho1995

1

177

29 окт 2012, 21:45

Разложить вектор по векторам

в форуме Аналитическая геометрия и Векторная алгебра

oksanakurb

2

460

07 окт 2012, 13:02

Разложить вектор а по векторам c и b

в форуме Геометрия

usenk0t

3

537

14 окт 2013, 20:24

Разложить вектор b по базису a1, a2, a3

в форуме Аналитическая геометрия и Векторная алгебра

AGA5510

1

322

31 окт 2012, 19:39

Разложить вектор по базису

в форуме Аналитическая геометрия и Векторная алгебра

wawewa

1

544

31 дек 2012, 02:00

Разложить вектор по векторам в трапеции

в форуме Геометрия

excellent

12

1161

07 сен 2012, 20:01

Разложить вектор по системе векторов проверьте

в форуме Аналитическая геометрия и Векторная алгебра

gail-ul

3

58

15 ноя 2016, 12:45

Построить вектор найти его координаты, и разложить по базису

в форуме Аналитическая геометрия и Векторная алгебра

Mukhinaanastasi

2

564

16 янв 2013, 03:18

Вектор медианы, вектор высоты, вектор биссектрисы

в форуме Аналитическая геометрия и Векторная алгебра

Higin

5

510

11 окт 2015, 14:40


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 8


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved