Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 20 ]  На страницу 1, 2  След.
Автор Сообщение
 Заголовок сообщения: Куб
СообщениеДобавлено: 23 май 2016, 00:19 
Не в сети
Продвинутый
Зарегистрирован:
18 май 2016, 18:27
Сообщений: 60
Cпасибо сказано: 13
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Доброй ночи всем заглянувшим!

Прошу помочь с рисунком в задаче:
Дан куб [math]ABCDA1B1C1D1[/math]. Через середину [math]D1C1[/math] проведена прямая [math]l[/math], пересекающая прямые [math]BA1[/math] и [math]AD1[/math]. Какой угол образует [math]l[/math]с [math]BA1[/math]?

Не могу представить, как должна пройти прямая [math]l[/math], чтобы она пересекла одновременно обе упомянутые прямые и проходила через т. E (см.рис.).
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 23 май 2016, 05:30 
Не в сети
Оракул
Аватара пользователя
Зарегистрирован:
14 дек 2013, 14:03
Сообщений: 827
Откуда: Москва
Cпасибо сказано: 131
Спасибо получено:
317 раз в 255 сообщениях
Очков репутации: 98

Добавить очки репутацииУменьшить очки репутации
Поскольку искомая прямая - линия пересечения плоскостей ЕВА1 и ЕАD1, а обе эти плоскости проходят через т. Е и т. В, то это и есть прямая ЕВ.... Угол ищите в трапеции А1ВЕ1Е, где Е1 - середина С1С....

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 23 май 2016, 21:53 
Не в сети
Последняя инстанция
Зарегистрирован:
24 апр 2010, 23:33
Сообщений: 3391
Cпасибо сказано: 246
Спасибо получено:
1010 раз в 872 сообщениях
Очков репутации: 273

Добавить очки репутацииУменьшить очки репутации
См.картинку
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 23 май 2016, 22:26 
Не в сети
Продвинутый
Зарегистрирован:
18 май 2016, 18:27
Сообщений: 60
Cпасибо сказано: 13
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
vvvv писал(а):
См.картинку
Изображение

Спасибо за отклик!) Вы не ошиблись в последней фразе картинки? Может не АВЕ, а А1ВЕ рассмотреть? Этот треугольник, А1ВЕ, прямоугольный, верно (угол А1 прямой)? Тогда искомый угол А1ВЕ = arctg(корень из двух/4)?..

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 23 май 2016, 22:32 
Не в сети
Продвинутый
Зарегистрирован:
18 май 2016, 18:27
Сообщений: 60
Cпасибо сказано: 13
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Dotsent писал(а):
Поскольку искомая прямая - линия пересечения плоскостей ЕВА1 и ЕАD1, а обе эти плоскости проходят через т. Е и т. В, то это и есть прямая ЕВ.... Угол ищите в трапеции А1ВЕ1Е, где Е1 - середина С1С....

Спасибо за отклик!) С прямой теперь понятно)
Простите, а почему искомый угол стоит искать в этой трапеции, а не в треугольнике А1ВЕ?..

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 23 май 2016, 23:52 
Не в сети
Последняя инстанция
Зарегистрирован:
24 апр 2010, 23:33
Сообщений: 3391
Cпасибо сказано: 246
Спасибо получено:
1010 раз в 872 сообщениях
Очков репутации: 273

Добавить очки репутацииУменьшить очки репутации
Конечно, А1ВЕ. Не дописал единичку.
Угол не прямой.Прямой между диагональю и ребром.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 24 май 2016, 00:24 
Не в сети
Продвинутый
Зарегистрирован:
18 май 2016, 18:27
Сообщений: 60
Cпасибо сказано: 13
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
1805 писал(а):
Dotsent писал(а):
Поскольку искомая прямая - линия пересечения плоскостей ЕВА1 и ЕАD1, а обе эти плоскости проходят через т. Е и т. В, то это и есть прямая ЕВ.... Угол ищите в трапеции А1ВЕ1Е, где Е1 - середина С1С....

Спасибо за отклик!) С прямой теперь понятно)
Простите, а почему искомый угол стоит искать в этой трапеции, а не в треугольнике А1ВЕ?..

Мне нужно найти стороны треугольника (например, взяв ребро куба за единицу), а потом найти угол по теореме косинусов. Я правильно понимаю? Таким образом, у меня получился угол, равный arccos(3/корень из 14). Верно?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 24 май 2016, 19:01 
Не в сети
Продвинутый
Зарегистрирован:
18 май 2016, 18:27
Сообщений: 60
Cпасибо сказано: 13
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
vvvv писал(а):
Конечно, А1ВЕ. Не дописал единичку.
Угол не прямой.Прямой между диагональю и ребром.

Простите, тода мне нужно найти стороны треугольника (например, взяв ребро куба за единицу), а потом найти угол по теореме косинусов? Я правильно понимаю? Таким образом, у меня получился угол, равный arccos(3/корень из 14). Верно?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 24 май 2016, 21:05 
Не в сети
Оракул
Аватара пользователя
Зарегистрирован:
14 дек 2013, 14:03
Сообщений: 827
Откуда: Москва
Cпасибо сказано: 131
Спасибо получено:
317 раз в 255 сообщениях
Очков репутации: 98

Добавить очки репутацииУменьшить очки репутации
1805 писал(а):
Спасибо за отклик!) С прямой теперь понятно)
Простите, а почему искомый угол стоит искать в этой трапеции, а не в треугольнике А1ВЕ?..

Потому, что трапеция красивая, равнобедренная и верхнее основание в 2 раза меньше нижнего....А ответ Ваш - неправильный...

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Куб
СообщениеДобавлено: 24 май 2016, 22:34 
Не в сети
Продвинутый
Зарегистрирован:
18 май 2016, 18:27
Сообщений: 60
Cпасибо сказано: 13
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Dotsent писал(а):
1805 писал(а):
Спасибо за отклик!) С прямой теперь понятно)
Простите, а почему искомый угол стоит искать в этой трапеции, а не в треугольнике А1ВЕ?..

Потому, что трапеция красивая, равнобедренная и верхнее основание в 2 раза меньше нижнего....А ответ Ваш - неправильный...

Изображение
Спасибо за подсказку!) Вот эта трапеция. Можно узнать соотношение пропорц.сторон из подобных треугольников АОВ и ЕОЕ1. Но через одну сторону, например, через ОВ в треугольнике ОВН, косинус искомого угла А1ВЕ у меня выразить не получается...(
Что еще тут можно придумать?

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу 1, 2  След.  Страница 1 из 2 [ Сообщений: 20 ]

Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: Booker48 и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved