Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
| Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
|
Страница 1 из 1 |
[ Сообщений: 3 ] |
|
| Автор | Сообщение | |
|---|---|---|
| lokk29 |
|
|
| Вернуться к началу | ||
| Avgust |
|
|
|
Решил не общим геометрическим способом, а частным способом, предполагая, что при любых значениях сторон исходного треугольника соотношение площадей постоянно. Соотношения 2:1, 3:2, 3:1 принял как размеры. Получается прямоугольный треугольник Пифагора со сторонами 3, 4, 5. Нашел методом подобия треугольников координату точки K (точки P и M имеют очевидные координаты) и по этим координатам определил численно прощадь S. Также численно нашел площадь треугольника ABC и, естественно, соотношение этих площадей. Вот что получил:
![]() Интересно, ответ верный? |
||
| Вернуться к началу | ||
| Li6-D |
|
|
|
Проверка другим методом:
[math]{S_\vartriangle}_{AMP}= \frac{{\left|{AP}\right|}}{{\left|{AC}\right|}}\cdot \frac{{\left|{AM}\right|}}{{\left|{AB}\right|}}\cdot{S_\vartriangle}_{ABC}= \frac{1}{{1 + 3}}\cdot \frac{2}{{2 + 1}}\cdot{S_\vartriangle}_{ABC}= \frac{{{S_\vartriangle}_{ABC}}}{6}.[/math] [math]{S_\vartriangle}_{BMK}= \frac{{\left|{BK}\right|}}{{\left|{BC}\right|}}\cdot \frac{{\left|{BM}\right|}}{{\left|{AB}\right|}}\cdot{S_\vartriangle}_{ABC}= \frac{3}{{3 + 2}}\cdot \frac{1}{{1 + 2}}\cdot{S_\vartriangle}_{ABC}= \frac{{{S_\vartriangle}_{ABC}}}{5}.[/math] [math]{S_\vartriangle}_{CKP}= \frac{{\left|{CP}\right|}}{{\left|{AC}\right|}}\cdot \frac{{\left|{CK}\right|}}{{\left|{CB}\right|}}\cdot{S_\vartriangle}_{ABC}= \frac{3}{{3 + 1}}\cdot \frac{2}{{2 + 3}}\cdot{S_\vartriangle}_{ABC}= \frac{{3{S_\vartriangle}_{ABC}}}{{10}}.[/math] [math]S ={S_\vartriangle}_{MKP}={S_\vartriangle}_{ABC}-{S_\vartriangle}_{AMP}-{S_\vartriangle}_{BMK}-{S_\vartriangle}_{CKP}= \left({1 - \frac{1}{6}- \frac{1}{5}- \frac{3}{{10}}}\right){S_\vartriangle}_{ABC}= \frac{{{S_\vartriangle}_{ABC}}}{3}.[/math] Ответы совпадают. |
||
| Вернуться к началу | ||
| За это сообщение пользователю Li6-D "Спасибо" сказали: Avgust, nicat |
||
|
[ Сообщений: 3 ] |
| Похожие темы | Автор | Ответы | Просмотры | Последнее сообщение |
|---|---|---|---|---|
|
Теория вероятности: задача про шары и задача про точку
в форуме Теория вероятностей |
6 |
632 |
02 окт 2021, 01:43 |
|
|
Задача на построение. Корректна ли задача?
в форуме Геометрия |
9 |
771 |
19 июл 2020, 19:17 |
|
|
Задача
в форуме Функциональный анализ, Топология и Дифференциальная геометрия |
1 |
318 |
13 июн 2015, 07:39 |
|
|
Задача
в форуме Теория вероятностей |
1 |
302 |
31 май 2015, 21:35 |
|
|
Задача №14 ЕГЭ
в форуме Геометрия |
8 |
302 |
02 июн 2020, 08:11 |
|
|
Задача
в форуме Геометрия |
3 |
228 |
08 апр 2017, 12:57 |
|
|
Задача
в форуме Теория вероятностей |
3 |
403 |
30 май 2015, 23:50 |
|
|
Задача
в форуме Теория вероятностей |
4 |
347 |
30 май 2015, 22:44 |
|
|
Задача по ТВ
в форуме Теория вероятностей |
1 |
349 |
15 ноя 2016, 21:39 |
|
|
Задача
в форуме Геометрия |
1 |
278 |
22 мар 2022, 13:25 |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Кто сейчас на конференции |
| Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |