Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 3 ] 
Автор Сообщение
 Заголовок сообщения: Интеграл
СообщениеДобавлено: 17 апр 2016, 13:00 
Не в сети
Одарённый
Зарегистрирован:
13 авг 2015, 22:23
Сообщений: 171
Cпасибо сказано: 9
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Изображение
как это решить?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 17 апр 2016, 13:41 
Не в сети
Гений
Зарегистрирован:
25 июл 2014, 12:28
Сообщений: 594
Cпасибо сказано: 72
Спасибо получено:
186 раз в 172 сообщениях
Очков репутации: 37

Добавить очки репутацииУменьшить очки репутации
Для удобства можно сделать замену[math]\log_{}{x} = t[/math], а потом взять по частям.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 17 апр 2016, 13:53 
Не в сети
Light & Truth
Зарегистрирован:
21 авг 2011, 14:49
Сообщений: 5279
Cпасибо сказано: 315
Спасибо получено:
2299 раз в 1966 сообщениях
Очков репутации: 520

Добавить очки репутацииУменьшить очки репутации
Два раза по частям.
[math]\begin{gathered} \int {\sqrt x {{\ln }^2}xdx} = \left| \begin{gathered} u = {\ln ^2}x\,\, = > \,\,du = \frac{{2\ln x}}{x}dx \hfill \\ dv = \sqrt x dx\,\, = > \,\,v = \frac{{2x\sqrt x }}{3} \hfill \\ \end{gathered} \right| = \frac{{2x\sqrt x {{\ln }^2}x}}{3} - \frac{4}{3}\int {\sqrt x \ln xdx} = \hfill \\ = \left| \begin{gathered} u = \ln x\,\, = > \,\,du = \frac{{dx}}{x} \hfill \\ dv = \sqrt x dx\,\, = > \,\,v = \frac{{2x\sqrt x }}{3} \hfill \\ \end{gathered} \right| = \frac{{2x\sqrt x {{\ln }^2}x}}{3} - \frac{{8x\sqrt x \ln x}}{9} + \frac{8}{9}\int {\sqrt x dx} = ... \hfill \\ \end{gathered}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Yurik "Спасибо" сказали:
cincinat
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 3 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Криволинейный интеграл второго порядка(Интеграл работы)

в форуме Интегральное исчисление

Mephisto

3

274

06 июл 2022, 22:50

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

3

707

18 янв 2015, 17:23

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

1

824

18 янв 2015, 17:23

Определенный интеграл и несобственный интеграл

в форуме Интегральное исчисление

VxVxN

11

1024

14 апр 2015, 20:58

Вычислить интеграл, Кратный интеграл

в форуме Интегральное исчисление

PUFFIN

4

579

25 апр 2020, 15:39

Несобственный интеграл, двойной интеграл

в форуме Интегральное исчисление

alexmilki

8

620

16 апр 2017, 21:43

Интеграл

в форуме Интегральное исчисление

ilmir254

1

107

25 май 2020, 19:39

Интеграл

в форуме Интегральное исчисление

nazik

1

104

08 апр 2018, 16:32

Интеграл

в форуме Интегральное исчисление

Alexand

5

215

20 май 2020, 14:38

Интеграл

в форуме Интегральное исчисление

jagdish

2

389

11 фев 2019, 17:08


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved