Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 52 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.
Автор Сообщение
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 19:18 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 ноя 2010, 18:12
Сообщений: 384
Cпасибо сказано: 61
Спасибо получено:
10 раз в 7 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
lexus666
знаю такую просто дробь меня смутила

тогда что у меня получается?) чет я ща немного запутался.)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 19:26 
Не в сети
Beautiful Mind
Аватара пользователя
Зарегистрирован:
24 янв 2011, 11:30
Сообщений: 1752
Откуда: Мамазия
Cпасибо сказано: 130
Спасибо получено:
595 раз в 479 сообщениях
Очков репутации: 375

Добавить очки репутацииУменьшить очки репутации
nikita0008 как человек с большим опытом советую вам сделать самому с самого начала. Это будет лучше для вас. А потом выложте ответ и мы проверим.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 19:27 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 ноя 2010, 18:12
Сообщений: 384
Cпасибо сказано: 61
Спасибо получено:
10 раз в 7 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
lexus666
конечно!Сейчас!

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 20:28 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 ноя 2010, 18:12
Сообщений: 384
Cпасибо сказано: 61
Спасибо получено:
10 раз в 7 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
[math]\int\limits_{ - 1}^3 {\frac{{4*\frac{{dt}}
{2}}}
{{{t^3}}}} = 4*\frac{1}
{2}\int\limits_{ - 1}^3 {\frac{{dt}}
{{{t^3}}}} = 2\int\limits_{ - 1}^3 {\frac{{dt}}
{{{t^3}}}} = 2*\frac{1}
{2}*\frac{{{t^{ - 2}}}}
{{ - 2}} = 2*\frac{1}
{2}*( - 2)*{t^2} = - 2{t^2} = - 16[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 20:36 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
в коэффициентах запутались: [math]2\int\frac{dt}{t^3}=2\cdot \frac{t^{-2}}{-2}=-\frac{1}{t^2}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 20:38 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 ноя 2010, 18:12
Сообщений: 384
Cпасибо сказано: 61
Спасибо получено:
10 раз в 7 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
mad_math
да да)))

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 20:40 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 ноя 2010, 18:12
Сообщений: 384
Cпасибо сказано: 61
Спасибо получено:
10 раз в 7 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
mad_math
ответ
[math]- \frac{8}
{9}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 21:05 
Не в сети
Профи
Аватара пользователя
Зарегистрирован:
01 ноя 2010, 18:12
Сообщений: 384
Cпасибо сказано: 61
Спасибо получено:
10 раз в 7 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
[math]\int\limits_{\sqrt 5 }^{2\sqrt 2 } {\frac{{xdx}}
{{\sqrt {3{x^2} + 1} }}} = \left[ \begin{gathered}
3x = t \hfill \\
dx = \frac{{dt}}
{3} \hfill \\
\end{gathered} \right] = \int\limits_4^5 {\frac{{x\frac{{dt}}
{3}}}
{{\sqrt {{t^2} + 1} }}} = \frac{1}
{3}\int\limits_4^5 {\frac{{xdx}}
{{\sqrt {{t^2} + 1} }}}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 21:44 
Не в сети
Beautiful Mind
Аватара пользователя
Зарегистрирован:
19 фев 2011, 23:53
Сообщений: 1889
Откуда: Алексин
Cпасибо сказано: 276
Спасибо получено:
981 раз в 775 сообщениях
Очков репутации: 229

Добавить очки репутацииУменьшить очки репутации
Я считаю, что в интеграле [math]\int\limits_{ - 1}^2 {\left( {{x^2} - 1} \right)xdx}[/math] нельзя сразу использовать постановку [math]x^2-1=t[/math], т.к. данная подстановка не является взаимно-однозначной (при [math]x=a>0[/math] и [math]x=-a[/math] [math]t[/math] принимает одно и тоже значение)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти интеграл
СообщениеДобавлено: 29 мар 2011, 21:48 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
nikita0008 писал(а):
mad_math
ответ
[math]- \frac{8}
{9}[/math]

[math]-\frac{1}{t^2}\Bigr|_{-1}^3=-\left(\frac{1}{9}-\frac{1}{1}\right)=-\left(\frac{1}{9}-1\right)=-\left(-\frac{8}{9}\right)=\frac{8}{9}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3, 4, 5, 6  След.  Страница 3 из 6 [ Сообщений: 52 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Найти интеграл

в форуме Интегральное исчисление

felil723

2

201

12 фев 2022, 22:11

Найти интеграл

в форуме Интегральное исчисление

makc2299

4

224

08 дек 2018, 15:55

Найти интеграл

в форуме Интегральное исчисление

tanyhaftv

2

335

18 июн 2021, 23:05

Найти интеграл

в форуме Интегральное исчисление

PFanthem

1

718

09 дек 2014, 10:18

Найти интеграл

в форуме Интегральное исчисление

md_house

2

542

24 апр 2018, 22:21

Найти интеграл

в форуме Интегральное исчисление

makc2299

5

345

18 май 2019, 20:08

Найти интеграл

в форуме Интегральное исчисление

Morody

4

275

18 июн 2021, 13:45

Найти интеграл

в форуме Интегральное исчисление

makc2299

2

306

23 сен 2019, 20:00

Найти интеграл

в форуме Интегральное исчисление

matema+tika

4

246

18 апр 2020, 15:25

Найти интеграл

в форуме Интегральное исчисление

Fa1c0n

3

233

17 апр 2018, 15:22


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 6


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved