Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 22 ]  На страницу Пред.  1, 2, 3  След.
Автор Сообщение
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 06 ноя 2015, 16:51 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Andy писал(а):
ExtreMaLLlka, а в остальном, по-моему, всё правильно.
Если правильно, то производная полученных первообразных интеграла должна равняться подынтегральной функции.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 06 ноя 2015, 16:52 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
ExtreMaLLlka писал(а):
и надо объем через тройной интеграл искать
Можно и через двойной, и просто через определённый интеграл.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю mad_math "Спасибо" сказали:
Andy
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 06 ноя 2015, 17:32 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22360
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
mad_math писал(а):
Andy писал(а):
ExtreMaLLlka, а в остальном, по-моему, всё правильно.
Если правильно, то производная полученных первообразных интеграла должна равняться подынтегральной функции.

Я не дифференцировал, а в выкладках ошибок не заметил. Если они есть, то прошу извинить. :)

Думаю, что нет резона бояться допустить ошибку. Если проверяющий её найдёт, то можно будет и исправить.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 06 ноя 2015, 18:13 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Andy писал(а):
Я не дифференцировал, а в выкладках ошибок не заметил. Если они есть, то прошу извинить.
Просто у меня получился другой ответ :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 06 ноя 2015, 18:20 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22360
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
mad_math писал(а):
Просто у меня получился другой ответ :)

Я думаю, ответ можно и написать для автора вопроса. :)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 06 ноя 2015, 18:49 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
У меня получилось так
[math]\int x\arcsin 2x\,dx=\frac{1}{8}\cdot x\cdot\sqrt{1-4x^2}-\frac{1}{16}\cdot(1-8x^2)\cdot\arcsin 2x+C[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 06 ноя 2015, 18:54 
Не в сети
Любитель математики
Аватара пользователя
Зарегистрирован:
16 июл 2011, 08:33
Сообщений: 22360
Откуда: Беларусь, Минск
Cпасибо сказано: 2110
Спасибо получено:
4978 раз в 4650 сообщениях
Очков репутации: 845

Добавить очки репутацииУменьшить очки репутации
mad_math писал(а):
У меня получилось так
[math]\int x\arcsin 2x\,dx=\frac{1}{8}\cdot x\cdot\sqrt{1-4x^2}-\frac{1}{16}\cdot(1-8x^2)\cdot\arcsin 2x+C[/math]

Можно проверить, используя формулу
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Andy "Спасибо" сказали:
mad_math
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 06 ноя 2015, 23:13 
Не в сети
Одарённый
Зарегистрирован:
25 фев 2015, 14:51
Сообщений: 197
Cпасибо сказано: 28
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
mad_math писал(а):
ExtreMaLLlka писал(а):
и надо объем через тройной интеграл искать
Можно и через двойной, и просто через определённый интеграл.


А подскажите, пожалуйста как. если б не "5" перед у, я б в полярных координатах решила, как в примерах приводится..а так не знаю..

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 07 ноя 2015, 00:52 
Не в сети
Верховный модератор
Аватара пользователя
Зарегистрирован:
13 окт 2010, 13:09
Сообщений: 19963
Откуда: Пермь + Одесса
Cпасибо сказано: 11725
Спасибо получено:
5319 раз в 4796 сообщениях
Очков репутации: 708

Добавить очки репутацииУменьшить очки репутации
Можно ввести обобщённые полярные координаты. Они как раз по эллипсу, а не по окружности.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 07 ноя 2015, 01:23 
Не в сети
Одарённый
Зарегистрирован:
25 фев 2015, 14:51
Сообщений: 197
Cпасибо сказано: 28
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
я такие не знаю, а если вот так правильно будет?
для четверти параболоида:
[math]\int\limits_{0}^{\sqrt{5} }dx\int\limits_{0}^{\sqrt{1-\frac{ x^2 }{ 5 } } }dy\int\limits_{0}^{5}dz[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3  След.  Страница 2 из 3 [ Сообщений: 22 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Интегралы

в форуме Интегральное исчисление

popfirdrih

22

190

17 ноя 2024, 15:52

ИНТЕГРАЛЫ

в форуме Интегральное исчисление

Facepalm

3

347

03 май 2016, 17:49

Интегралы

в форуме Объявления участников Форума

Fit11

0

314

02 июн 2016, 11:01

Интегралы

в форуме Интегральное исчисление

ligarz

1

299

06 июн 2016, 14:56

Интегралы

в форуме Интегральное исчисление

Daha1997

3

356

25 ноя 2015, 16:56

Интегралы

в форуме Интегральное исчисление

Vlader0n

1

218

06 июн 2016, 19:20

Интегралы

в форуме Интегральное исчисление

kupidon97

14

478

09 июн 2016, 05:42

Интегралы

в форуме Интегральное исчисление

Buma_190

1

211

04 апр 2017, 12:05

Интегралы

в форуме Интегральное исчисление

MashaI

1

250

15 май 2017, 12:46

Интегралы

в форуме Интегральное исчисление

joni966

4

208

17 май 2017, 21:41


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved