Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 4 ] 
Автор Сообщение
 Заголовок сообщения: Интеграл
СообщениеДобавлено: 07 авг 2013, 21:44 
Не в сети
Гений
Зарегистрирован:
12 дек 2010, 20:32
Сообщений: 544
Cпасибо сказано: 306
Спасибо получено:
28 раз в 23 сообщениях
Очков репутации: 7

Добавить очки репутацииУменьшить очки репутации
[math]\displaystyle \int\frac{x+x^{\frac{2}{3}}+2x^{\frac{1}{6}}}{x.\left(1+x^{\frac{1}{3}}\right)}dx[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 07 авг 2013, 21:54 
Не в сети
Свет и истина
Аватара пользователя
Зарегистрирован:
30 мар 2010, 11:03
Сообщений: 7479
Cпасибо сказано: 526
Спасибо получено:
3644 раз в 2901 сообщениях
Очков репутации: 745

Добавить очки репутацииУменьшить очки репутации
А что такое точка внизу здесь и в другом примере рядом?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 07 авг 2013, 22:41 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13571
Откуда: Москва
Cпасибо сказано: 1293
Спасибо получено:
3625 раз в 3182 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
[math]x. = x\cdot[/math] ???

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интеграл
СообщениеДобавлено: 08 авг 2013, 07:53 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13571
Откуда: Москва
Cпасибо сказано: 1293
Спасибо получено:
3625 раз в 3182 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
[math]= \int \frac{2 dx}{x^{\frac 76}+x^{\frac 56}}+\int \frac{dx}{1+x^{\frac 13}}+\int \frac{dx}{x^{\frac 23}+x^{\frac 13}}=[/math]

[math]= 12 \operatorname{arctg} \left ( {x^{\frac 16}\right )+3 \left [ \ln \left (1+{x^{\frac 13} \right )-{x^{\frac 13}+\frac 12 {x^{\frac 23} \right ] +3 \left [ x^{\frac 13}- \ln \left (1+{x^{\frac 13} \right ) \right ] + C =[/math]

[math]= \frac 32 \left [ {x^{\frac 23}+8 \operatorname{arctg} \left ( {x^{\frac 16}\right ) \right ]+ C[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Avgust "Спасибо" сказали:
jagdish
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 4 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Криволинейный интеграл второго порядка(Интеграл работы)

в форуме Интегральное исчисление

Mephisto

3

274

06 июл 2022, 22:50

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

3

708

18 янв 2015, 17:23

Неопределенный интеграл. скажите , как решать интеграл

в форуме Интегральное исчисление

natalee

1

825

18 янв 2015, 17:23

Определенный интеграл и несобственный интеграл

в форуме Интегральное исчисление

VxVxN

11

1024

14 апр 2015, 20:58

Вычислить интеграл, Кратный интеграл

в форуме Интегральное исчисление

PUFFIN

4

579

25 апр 2020, 15:39

Несобственный интеграл, двойной интеграл

в форуме Интегральное исчисление

alexmilki

8

620

16 апр 2017, 21:43

Интеграл

в форуме Интегральное исчисление

ilmir254

1

107

25 май 2020, 19:39

Интеграл

в форуме Интегральное исчисление

nazik

1

104

08 апр 2018, 16:32

Интеграл

в форуме Интегральное исчисление

Alexand

5

215

20 май 2020, 14:38

Интеграл

в форуме Интегральное исчисление

jagdish

2

389

11 фев 2019, 17:08


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved