Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
| Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
|
Страница 1 из 1 |
[ Сообщений: 3 ] |
|
| Автор | Сообщение | |
|---|---|---|
| jagdish |
|
|
|
|
||
| Вернуться к началу | ||
| Avgust |
|
|
|
[math]I(k) = \int_{0}^{\infty}\frac{\ln(x)}{x^2+kx+k^2}=\frac{2\pi \ln(k)}{3 \sqrt{3}\, k}[/math]
[math]k \cdot I(k)-I(1)=\frac{2\pi }{3 \sqrt{3}}\ln(k)[/math] ![]() |
||
| Вернуться к началу | ||
| За это сообщение пользователю Avgust "Спасибо" сказали: jagdish |
||
| jagdish |
|
|
|
Thanks Avgust Got it.
[math]\bf{\mathbb{I(\bold{k})}=\int_{0}^{\infty}\frac{\ln(x)}{x^2+kx+k^2}dx.................(1)}[/math] Put [math]\bf{x=kt\Leftrightarrow dx = kdt}[/math] and Changing Limits, We Get [math]\bf{\mathbb{I(\bold{k})}=\int_{0}^{\infty}\frac{\ln(kt).kdt}{k^2(t^2+t+1)}dt}[/math] [math]\bf{\mathbb{\bold{k}.I(\bold{k})}=\int_{0}^{\infty}\frac{\ln(k)}{t^2+t+1}dt+\int_{0}^{\infty}\frac{\ln(t)}{t^2+t+1}dt}[/math] [math]\bf{\mathbb{\bold{k}.I(\bold{k})}=\ln(k).\int_{0}^{\infty}\frac{1}{t^2+t+1}dt+\mathbb{I(\bold{1})}}[/math] Using eqation [math]\bf{(1)\;\;,}[/math] Put [math]\bf{k=1}[/math] in eqn...[math]\bf{(1)}[/math] We Get [math]\bf{I(\bold{1})=\int_{0}^{\infty}\frac{\ln(x)}{x^2+x+1}=\int_{0}^{\infty}\frac{\ln(t)}{t^2+t+1}\right)}[/math] So [math]\bf{\mathbb{\bold{k}.I(\bold{k})}-I(1)=\bf{\ln(k)\int_{0}^{\infy}\frac{1}{t^2+t+1}dt}}[/math] [math]\bf{=\ln(k)\int_{0}^{\infty}\frac{1}{\left(t+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}dt=\ln(k).\frac{2}{\sqrt{3}}.\tan^{-1}\left(\frac{2t+1}{\sqrt{3}}\right)\bigg|_{0}^{\frac{\infty}}}[/math] [math]\bf{=\ln(k).\frac{2}{\sqrt{3}}\left(\frac{\pi}{2}-\frac{\pi}{6}\right)=\ln(k).\frac{2\pi}{3\sqrt{3}}}[/math] So [math]\boxed{\boxed{\bf{\mathbb{\bold{k}.I(\bold{k})}-I(\bold{1})=\frac{2\pi}{3\sqrt{3}}.ln(k)}}}[/math] |
||
| Вернуться к началу | ||
|
[ Сообщений: 3 ] |
| Похожие темы | Автор | Ответы | Просмотры | Последнее сообщение |
|---|---|---|---|---|
|
Интегралы
в форуме Интегральное исчисление |
22 |
189 |
17 ноя 2024, 15:52 |
|
|
ИНТЕГРАЛЫ
в форуме Интегральное исчисление |
3 |
347 |
03 май 2016, 17:49 |
|
|
Интегралы
в форуме Объявления участников Форума |
0 |
314 |
02 июн 2016, 11:01 |
|
|
Интегралы
в форуме Интегральное исчисление |
1 |
299 |
06 июн 2016, 14:56 |
|
|
Интегралы
в форуме Интегральное исчисление |
3 |
356 |
25 ноя 2015, 16:56 |
|
|
Интегралы
в форуме Интегральное исчисление |
1 |
218 |
06 июн 2016, 19:20 |
|
|
Интегралы
в форуме Интегральное исчисление |
14 |
478 |
09 июн 2016, 05:42 |
|
|
Интегралы
в форуме Интегральное исчисление |
1 |
211 |
04 апр 2017, 12:05 |
|
|
Интегралы
в форуме Интегральное исчисление |
1 |
250 |
15 май 2017, 12:46 |
|
|
Интегралы
в форуме Интегральное исчисление |
4 |
208 |
17 май 2017, 21:41 |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4 |
| Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |