Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 33 ]  На страницу 1, 2, 3, 4  След.
Автор Сообщение
 Заголовок сообщения: Интегралы
СообщениеДобавлено: 16 окт 2012, 02:37 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Дайте пояснения или указания с рисунками для решения данных заданий, пожалуйста.

1. Используя сферические или цилиндрические координаты расставить пределы интегрированию:

[math]\iiint\limits_V {f(x,y,z)dxdydz}[/math], если [math]V \,\colon 1 \leqslant {x^2} + {y^2} + {z^2} \leqslant 4,y \geqslant 0,z \geqslant 0[/math].

2. Используя полярные координаты вычислить:

[math]\iint\limits_D {\frac{{ydxdy}}{{\sqrt {{x^2} + {y^2}} }}}[/math] [math]D = \left\{ {1 \leqslant {x^2} + {y^2} \leqslant 4;y \geqslant \left. 0 \right\}} \right.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 13:18 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
Как ознакомитесь, начинайте что-нибудь делать.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Human "Спасибо" сказали:
The_Blur
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 16:51 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Разве так может быть?
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 17:46 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
29 окт 2010, 11:15
Сообщений: 2790
Откуда: СССР
Cпасибо сказано: 120
Спасибо получено:
857 раз в 688 сообщениях
Очков репутации: 203

Добавить очки репутацииУменьшить очки репутации
Не только может, но и должно, поскольку Вы взяли симметричную относительно оси абсцисс область (все кольцо вместо верхней его половины), а подинтегральная функция нечетна по переменной [math]y.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю dr Watson "Спасибо" сказали:
The_Blur
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 18:12 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Блин(( надо же было половину( а как тогда правильно???

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 18:19 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
29 окт 2010, 11:15
Сообщений: 2790
Откуда: СССР
Cпасибо сказано: 120
Спасибо получено:
857 раз в 688 сообщениях
Очков репутации: 203

Добавить очки репутацииУменьшить очки репутации
Ну дык, пол-оборота сбавьте.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю dr Watson "Спасибо" сказали:
The_Blur
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 18:20 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
фи от 0 до Пи?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 18:29 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
И тогда ответ будет 3?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 18:32 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
29 окт 2010, 11:15
Сообщений: 2790
Откуда: СССР
Cпасибо сказано: 120
Спасибо получено:
857 раз в 688 сообщениях
Очков репутации: 203

Добавить очки репутацииУменьшить очки репутации
Да

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю dr Watson "Спасибо" сказали:
The_Blur
 Заголовок сообщения: Re: Интегралы
СообщениеДобавлено: 16 окт 2012, 19:03 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
В первом так и не понял как расписать эту область( прочитал документ по ссылке из второго поста(

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу 1, 2, 3, 4  След.  Страница 1 из 4 [ Сообщений: 33 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Интегралы

в форуме Интегральное исчисление

popfirdrih

22

189

17 ноя 2024, 15:52

ИНТЕГРАЛЫ

в форуме Интегральное исчисление

Facepalm

3

347

03 май 2016, 17:49

Интегралы

в форуме Объявления участников Форума

Fit11

0

314

02 июн 2016, 11:01

Интегралы

в форуме Интегральное исчисление

ligarz

1

299

06 июн 2016, 14:56

Интегралы

в форуме Интегральное исчисление

Daha1997

3

356

25 ноя 2015, 16:56

Интегралы

в форуме Интегральное исчисление

Vlader0n

1

218

06 июн 2016, 19:20

Интегралы

в форуме Интегральное исчисление

kupidon97

14

478

09 июн 2016, 05:42

Интегралы

в форуме Интегральное исчисление

Buma_190

1

211

04 апр 2017, 12:05

Интегралы

в форуме Интегральное исчисление

MashaI

1

250

15 май 2017, 12:46

Интегралы

в форуме Интегральное исчисление

joni966

4

208

17 май 2017, 21:41


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 6


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved