Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 29 ]  На страницу 1, 2, 3  След.
Автор Сообщение
 Заголовок сообщения: Криволинейный интеграл
СообщениеДобавлено: 08 окт 2012, 17:33 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Доброго времени суток.
На самом деле я уже решал такие интегралы по кривой отрезка, но тут не понимаю как с такой областью...
[math]\int\limits_L {2\sin x\cos xdS,L:y = \ln \cos x}[/math] от [math](0;0)[/math] до [math](\pi /4, - 0.5\ln 2)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 08 окт 2012, 17:51 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
Нет тут никакой области. [math]S[/math] - это длина дуги кривой.

[math]dS=\sqrt{1+(y')^2}\,dx[/math]

У Вас обычный криволинейный интеграл первого рода.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 11 окт 2012, 21:06 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Пределы от 0 до Пи/4?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 11 окт 2012, 21:10 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
Конечно.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 14 окт 2012, 22:16 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Проверьте, пожалуйста.
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 14 окт 2012, 22:30 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
Вроде верно.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 14 окт 2012, 22:41 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Как решить еще такое? Вроде как-то по формуле Грина...
Криволинейный интеграл 2 рода:
[math]\oint {4ydx + 5xdy}[/math], область интегрирования ограничена линиями [math]y = {x^2} - 7x,y = - 12[/math] (обход положительный).

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 14 окт 2012, 22:45 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
И объясните, что такое положительный обход?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 14 окт 2012, 22:47 
Не в сети
Последняя инстанция
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4113
Cпасибо сказано: 116
Спасибо получено:
1823 раз в 1515 сообщениях
Очков репутации: 379

Добавить очки репутацииУменьшить очки репутации
The_Blur писал(а):
Как решить еще такое? Вроде как-то по формуле Грина...


Что значит "как-то"? Вам непонятна формула Грина?

The_Blur писал(а):
И объясните, что такое положительный обход?


Против часовой стрелки.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Криволинейный интеграл
СообщениеДобавлено: 14 окт 2012, 22:48 
Не в сети
Одарённый
Аватара пользователя
Зарегистрирован:
15 ноя 2010, 18:31
Сообщений: 199
Cпасибо сказано: 83
Спасибо получено:
2 раз в 2 сообщениях
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации
Да, непонятна( Лекция прошла неудачно( Не уяснил( Поясните на данном примере, пожалуйста.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу 1, 2, 3  След.  Страница 1 из 3 [ Сообщений: 29 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Криволинейный интеграл второго порядка(Интеграл работы)

в форуме Интегральное исчисление

Mephisto

3

274

06 июл 2022, 22:50

Криволинейный интеграл

в форуме Интегральное исчисление

SpeedF1re

3

307

22 янв 2015, 01:05

Криволинейный интеграл

в форуме Интегральное исчисление

www3

1

532

20 июн 2015, 00:19

Криволинейный интеграл

в форуме Интегральное исчисление

carti539

11

403

10 дек 2023, 14:23

Криволинейный интеграл

в форуме Интегральное исчисление

Ryslannn

4

297

08 дек 2017, 10:12

Криволинейный интеграл

в форуме Интегральное исчисление

Children of Math

2

139

10 ноя 2019, 10:36

Криволинейный интеграл

в форуме Интегральное исчисление

sado98

1

210

22 дек 2017, 20:24

Криволинейный интеграл

в форуме Интегральное исчисление

makc2299

1

146

30 май 2019, 12:07

Криволинейный интеграл

в форуме Интегральное исчисление

makc2299

1

149

26 май 2019, 22:50

Криволинейный интеграл

в форуме Интегральное исчисление

Ryslannn

13

650

25 окт 2018, 12:35


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved