| Математический форум Math Help Planet http://mathhelpplanet.com/ |
|
| Вычислить неопределенные интергалы. http://mathhelpplanet.com/viewtopic.php?f=19&t=12216 |
Страница 4 из 4 |
| Автор: | Peter [ 04 янв 2012, 17:25 ] |
| Заголовок сообщения: | Re: Вычислить неопределенные интергалы. |
Понятно СПАСИБО тебе большое, а под буквой А поможешь? |
|
| Автор: | mad_math [ 04 янв 2012, 17:28 ] |
| Заголовок сообщения: | Re: Вычислить неопределенные интергалы. |
Peter Я вам написала, что делать под буквой а). Решать за вас не буду, потому что скучно и писать много. |
|
| Автор: | Peter [ 04 янв 2012, 17:37 ] |
| Заголовок сообщения: | Re: Вычислить неопределенные интергалы. |
mad_math А с этим сможешь помочь? |
|
| Автор: | mad_math [ 04 янв 2012, 17:42 ] |
| Заголовок сообщения: | Re: Вычислить неопределенные интергалы. |
[math]\sin{x}dx=-d\left(\cos{x}\right)[/math] [math]\int\cos^2{x}\cdot\sin^3{x}dx=\int\cos^2{x}\cdot\sin^2{x}\cdot\sin{x}dx=-\int\cos^2{x}(1-\cos^2{x})d(\cos{x})=...[/math] |
|
| Автор: | Peter [ 05 янв 2012, 15:05 ] |
| Заголовок сообщения: | Re: Вычислить неопределенные интергалы. |
mad_math писал(а): [math]\sin{x}dx=-d\left(\cos{x}\right)[/math] [math]\int\cos^2{x}\cdot\sin^3{x}dx=\int\cos^2{x}\cdot\sin^2{x}\cdot\sin{x}dx=-\int\cos^2{x}(1-\cos^2{x})d(\cos{x})=...[/math] а результат какой |
|
| Страница 4 из 4 | Часовой пояс: UTC + 3 часа [ Летнее время ] |
| Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group http://www.phpbb.com/ |
|