Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 10 ] 
Автор Сообщение
 Заголовок сообщения: Частные производные
СообщениеДобавлено: 14 май 2015, 17:15 
Не в сети
Начинающий
Зарегистрирован:
11 май 2015, 13:34
Сообщений: 17
Cпасибо сказано: 18
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Всем привет! Помогите проверить правильность моего решения! :Search: :sorry: Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 17:24 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15848
Откуда: Беларусь, Минск
Cпасибо сказано: 1041
Спасибо получено:
3477 раз в 3214 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
mapmeladka, по-моему, Вы не учли, что [math]\left(\operatorname{tg}y^z\right)'_x=0.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Andy "Спасибо" сказали:
mapmeladka
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 18:05 
Не в сети
Начинающий
Зарегистрирован:
11 май 2015, 13:34
Сообщений: 17
Cпасибо сказано: 18
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Andy
Так это разве не косинус?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 18:11 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15848
Откуда: Беларусь, Минск
Cпасибо сказано: 1041
Спасибо получено:
3477 раз в 3214 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
mapmeladka, Вы не учли, что переменные [math]y[/math] и [math]z[/math] не зависят от переменной [math]x.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Andy "Спасибо" сказали:
mapmeladka
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 18:15 
Не в сети
Начинающий
Зарегистрирован:
11 май 2015, 13:34
Сообщений: 17
Cпасибо сказано: 18
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Andy
т.е., оно будет выглядеть проще? Тангенс будет как число? :sorry: не пойму :sorry:

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 18:17 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15848
Откуда: Беларусь, Минск
Cпасибо сказано: 1041
Спасибо получено:
3477 раз в 3214 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
mapmeladka писал(а):
Andy
т.е., оно будет выглядеть проще? Тангенс будет как число? :sorry: не пойму :sorry:

mapmeladka, [math]u'_x=2x\operatorname{tg}y^z.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 18:20 
Не в сети
Начинающий
Зарегистрирован:
11 май 2015, 13:34
Сообщений: 17
Cпасибо сказано: 18
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Andy писал(а):
mapmeladka писал(а):
Andy
т.е., оно будет выглядеть проще? Тангенс будет как число? :sorry: не пойму :sorry:

mapmeladka, [math]u'_x=2x\operatorname{tg}y^z.[/math]


ооо, точно, спасибо огромное :Yahoo!:

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 18:23 
Не в сети
Гений
Зарегистрирован:
07 май 2015, 14:10
Сообщений: 642
Cпасибо сказано: 0
Спасибо получено:
173 раз в 167 сообщениях
Очков репутации: 24

Добавить очки репутацииУменьшить очки репутации
u'(y)=x^2 /(cos^2(y^z))z y^(z-1)
u'(z)=x^2 /(cos^2(y^z))z y^z ln y

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю victormitin "Спасибо" сказали:
mapmeladka
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 18:31 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15848
Откуда: Беларусь, Минск
Cпасибо сказано: 1041
Спасибо получено:
3477 раз в 3214 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
victormitin писал(а):
...
u'(z)=x^2 /(cos^2(y^z))z y^z ln y

Думаю, что всё-таки [math]u'_z=\frac{x^2 y^z\ln y}{\cos^2 y^z}.[/math] Без множителя [math]z.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Andy "Спасибо" сказали:
mapmeladka
 Заголовок сообщения: Re: Частные производные
СообщениеДобавлено: 14 май 2015, 18:35 
Не в сети
Гений
Зарегистрирован:
07 май 2015, 14:10
Сообщений: 642
Cпасибо сказано: 0
Спасибо получено:
173 раз в 167 сообщениях
Очков репутации: 24

Добавить очки репутацииУменьшить очки репутации
Да, без z. Скопировал лишнее.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю victormitin "Спасибо" сказали:
mapmeladka
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Частные производные и частные дифференциалы функций

в форуме Дифференциальное исчисление

Ciber15

10

153

13 фев 2018, 16:55

Частные производные

в форуме Дифференциальное исчисление

Eshk1n

1

243

14 май 2012, 19:47

Частные производные

в форуме Дифференциальные и Интегральные уравнения

AntikPrisadka

1

175

20 апр 2013, 22:22

Частные производные

в форуме Дифференциальное исчисление

neeara

0

48

19 ноя 2017, 13:40

Частные производные

в форуме Дифференциальное исчисление

Dirtamen

2

146

26 янв 2015, 15:58

Частные производные

в форуме Дифференциальное исчисление

Opser

21

496

02 июл 2015, 19:45

Частные производные

в форуме Дифференциальное исчисление

homo_illustris

2

288

21 фев 2013, 12:48

Частные производные

в форуме Дифференциальное исчисление

ExtreMaLLlka

4

121

31 авг 2017, 17:24

Частные производные

в форуме Дифференциальное исчисление

drago123

8

121

13 янв 2017, 13:08

Частные производные

в форуме Дифференциальное исчисление

arturio

3

205

10 сен 2012, 19:15


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved