Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 28 ]  На страницу Пред.  1, 2, 3  След.
Автор Сообщение
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 04 янв 2015, 16:57 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
А! ясно. С Новым наступившем Вас Годом! Пусть в каждом треугольнике будет максимум! :beer:

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 04 янв 2015, 17:07 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 10:27
Сообщений: 7856
Cпасибо сказано: 629
Спасибо получено:
7057 раз в 5487 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Два элементарных решения. :D1 :D1
Изображение
Изображение
Изображение
Изображение
Изображение
Изображение

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю andrei "Спасибо" сказали:
Prokop
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 04 янв 2015, 20:26 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
Так где же формула S(max)=f(a,b,c,d) ?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 04 янв 2015, 21:33 
Не в сети
Последняя инстанция
Зарегистрирован:
24 апр 2010, 23:33
Сообщений: 3391
Cпасибо сказано: 246
Спасибо получено:
1010 раз в 872 сообщениях
Очков репутации: 273

Добавить очки репутацииУменьшить очки репутации
Avgust писал(а):
Так где же формула S(max)=f(a,b,c,d) ?

Так это формула Брахмагупты.
S=((p-a)(p-b)(p-c)(p-d))^1/2
где p - полупериметр.Формула Герона -ее частный случай, когда одна из сторон равна нулю.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 04 янв 2015, 23:21 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
Ну, допустим. Тогда рассчитайте максимальную площадь при a=3; b=2; c=5; d=4

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 05 янв 2015, 13:02 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
Я проанализировал свою формулу для [math]S_{max}[/math] и пришел к интересному выводу: если числа a, b, c, d такие, что из них можно составить выпуклый четырехугольник, то эта формула эквивалентна формуле

[math]S_{max}=\sqrt{a\, b\, c\, d}[/math]

Такая вот удивительнейшая простота!

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 05 янв 2015, 15:10 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
То есть обнаружено открытие:

если

[math]a\le b \le c \le d[/math]

и при этом

[math]d\le a+b+c[/math]

то максимальная площадь четырехугольника

[math]\frac 12 (a\,d + b\,c) \, \sqrt{1-\frac{(a^2+d^2-b^2-c^2)^2}{4(a\,d+b\,c)^2}}=\sqrt{a\,b\,c\,d}[/math]

Замечательный математический факт!

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 05 янв 2015, 15:45 
Не в сети
Последняя инстанция
Зарегистрирован:
17 окт 2013, 19:46
Сообщений: 1438
Cпасибо сказано: 120
Спасибо получено:
609 раз в 482 сообщениях
Очков репутации: 163

Добавить очки репутацииУменьшить очки репутации
Avgust писал(а):
То есть обнаружено открытие:

если

[math]a\le b \le c \le d[/math]

и при этом

[math]d\le a+b+c[/math]

то максимальная площадь четырехугольника

[math]\frac 12 (a\,d + b\,c) \, \sqrt{1-\frac{(a^2+d^2-b^2-c^2)^2}{4(a\,d+b\,c)^2}}=\sqrt{a\,b\,c\,d}[/math]

Замечательный математический факт!
Особенно, если [math]a\approx 0[/math]. (В некотором смысле треугольник и есть четырехугольник с одной "нулевой" стороной)
Avgust, Вы читать умеете?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 05 янв 2015, 16:46 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
Я читать умею, вот только явной формулы не вижу. И примера расчета.Сам же дал аж две: цыфырки подставляю и даю готовенькое.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Задача
СообщениеДобавлено: 05 янв 2015, 18:24 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 19:13
Сообщений: 13561
Откуда: Москва
Cпасибо сказано: 1291
Спасибо получено:
3622 раз в 3180 сообщениях
Очков репутации: 678

Добавить очки репутацииУменьшить очки репутации
Оказалось не все так просто. Чтобы моя формула для [math]S_{max}[/math] была равной
[math]\sqrt{a\,b\,c\,d}[/math] нужно чтобы числа a, b, c, d составляли арифметическую прогрессию. Так что верная формула - в моем первом посте.
Моя формула дает тот же результат, что и формула Брахмагупты, но если последнюю развернуть полностью, то будет очень громоздкой. Голосуйте за мою формулу!

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Avgust "Спасибо" сказали:
Shadows
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу Пред.  1, 2, 3  След.  Страница 2 из 3 [ Сообщений: 28 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Теория вероятности: задача про шары и задача про точку

в форуме Теория вероятностей

AdmiralAnanas

6

632

02 окт 2021, 01:43

Задача на построение. Корректна ли задача?

в форуме Геометрия

Student Studentovich

9

771

19 июл 2020, 19:17

Задача

в форуме Функциональный анализ, Топология и Дифференциальная геометрия

Luna

1

318

13 июн 2015, 07:39

Задача

в форуме Теория вероятностей

Alina55577

1

302

31 май 2015, 21:35

Задача №14 ЕГЭ

в форуме Геометрия

nik1508

8

302

02 июн 2020, 08:11

Задача

в форуме Геометрия

alex1

3

228

08 апр 2017, 12:57

Задача

в форуме Теория вероятностей

Alina55577

3

403

30 май 2015, 23:50

Задача

в форуме Теория вероятностей

Alina55577

4

347

30 май 2015, 22:44

Задача по ТВ

в форуме Теория вероятностей

andrey1997

1

349

15 ноя 2016, 21:39

Задача

в форуме Геометрия

Rimus4

1

278

22 мар 2022, 13:25


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved