Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 4 ] 
Автор Сообщение
 Заголовок сообщения: Дифф.уравнение
СообщениеДобавлено: 19 окт 2014, 16:55 
Не в сети
Одарённый
Зарегистрирован:
04 сен 2013, 10:25
Сообщений: 175
Откуда: Моscow-City
Cпасибо сказано: 35
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Изображение
помогите дорешать,скажите,в чем ошибка,очень надо

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Дифф.уравнение
СообщениеДобавлено: 19 окт 2014, 17:08 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 03:09
Сообщений: 4080
Cпасибо сказано: 115
Спасибо получено:
1803 раз в 1502 сообщениях
Очков репутации: 375

Добавить очки репутацииУменьшить очки репутации
У Вас единица есть корень кратности 2, поэтому нужно подставлять [math]Ax^2e^x[/math].

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Human "Спасибо" сказали:
lizasimpson
 Заголовок сообщения: Re: Дифф.уравнение
СообщениеДобавлено: 19 окт 2014, 17:12 
В сети
Beautiful Mind
Зарегистрирован:
26 янв 2014, 16:58
Сообщений: 1529
Cпасибо сказано: 0
Спасибо получено:
299 раз в 292 сообщениях
Очков репутации: 102

Добавить очки репутацииУменьшить очки репутации
Вторую часть частного решения я бы искал в виде:


y = A [math]x^{2}[/math] [math]e^{x}[/math] + B [math]e^{-x}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Radley "Спасибо" сказали:
lizasimpson
 Заголовок сообщения: Re: Дифф.уравнение
СообщениеДобавлено: 19 окт 2014, 17:50 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
30 мар 2010, 11:03
Сообщений: 6620
Cпасибо сказано: 415
Спасибо получено:
3278 раз в 2593 сообщениях
Очков репутации: 680

Добавить очки репутацииУменьшить очки репутации
Или через гиперболические функции

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Дифф.уравнение

в форуме Дифференциальное исчисление

lizasimpson

1

135

25 янв 2014, 18:29

Дифф. уравнение

в форуме Дифференциальные и Интегральные уравнения

sun_of_light

5

282

18 ноя 2012, 20:38

Дифф. уравнение

в форуме Дифференциальное исчисление

graft

1

142

12 май 2015, 21:04

Дифф.уравнение

в форуме Дифференциальное исчисление

lizasimpson

2

154

16 май 2014, 15:44

Дифф. уравнение

в форуме Дифференциальные и Интегральные уравнения

Wersel

8

211

08 май 2014, 01:12

Дифф.уравнение

в форуме Дифференциальные и Интегральные уравнения

cincinat

5

225

29 сен 2015, 14:36

Дифф.уравнение

в форуме Дифференциальные и Интегральные уравнения

Ryslannn

17

562

14 мар 2013, 22:52

Дифф уравнение

в форуме Дифференциальное исчисление

Letone

1

265

24 дек 2014, 08:20

Дифф.уравнение

в форуме Дифференциальное исчисление

lizasimpson

3

146

14 мар 2014, 10:19

Дифф уравнение

в форуме Дифференциальные и Интегральные уравнения

351w

31

428

29 окт 2017, 10:48


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: Google Adsense [Bot] и гости: 9


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2018 MathHelpPlanet.com. All rights reserved