Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
| Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
|
Страница 1 из 2 |
[ Сообщений: 19 ] | На страницу 1, 2 След. |
|
| Автор | Сообщение | |
|---|---|---|
| Isabella |
|
|
|
z=x^2+xy-2 4x^2-4≤y≤0 |
||
| Вернуться к началу | ||
| Andy |
|
|
|
Isabella, сначала изобразите область [math]4x^2-4 \leq y \leq 0.[/math]
|
||
| Вернуться к началу | ||
| Isabella |
|
|
|
Andy писал(а): Isabella, сначала изобразите область [math]4x^2-4 \leq y \leq 0.[/math] Сложный вопрос, на этом как раз остановилась)) |
||
| Вернуться к началу | ||
| Andy |
|
|
|
Isabella, нужно построить в системе координат [math]xOy[/math] график функции [math]y=4x^2-4=4(x-1)(x+1).[/math] Заданная область ограничена снизу этим графиком, а сверху осью абсцисс [math]y=0.[/math]
|
||
| Вернуться к началу | ||
| Isabella |
|
|
| Вернуться к началу | ||
| Andy |
|
|
|
Isabella, почти. Проявите больше аккуратности. Найдите координаты точек, через которые проходит парабола. Для этого возьмите последовательно значения [math]x_1=-1,~x_2=-0,5,~x_3=0,~x_4=0,5,~x_5=1[/math] и, воспользовавшись формулой [math]y=4(x-1)(x+1),[/math] вычислите [math]y_1,~y_2,~y_3,~y_4,~y_5.[/math] Получите упорядоченные пары чисел [math](x_1,~y_1),~...,~(x_5,~y_5),[/math] которые являются координатами точек параболы. Эти точки изобразите в системе координат [math]xOy[/math] и соедините плавной линией. Она является нижней границей области. Верхней границей является ось абсцисс. Область заштрихуйте.
|
||
| Вернуться к началу | ||
| Isabella |
|
|
| Вернуться к началу | ||
| Andy |
|
|
|
Isabella, посетите этот ресурс: http://math1.ru/education/funct_sev_var/maxmin2.html и разберите примеры.
|
||
| Вернуться к началу | ||
| Isabella |
|
|
| Вернуться к началу | ||
| Andy |
|
|
|
Isabella, я Вам дал ссылку, чтобы Вы рассмотрели примеры. Заметьте, заголовок созданной Вами темы - "Система неравенств" - не подразумевает рассмотрения всего решения задачи...
С системой неравенств мы разобрались, область определения функции изобразили. Теперь оторвитесь от методички, отдохните и, только хорошо отдохнув, вернитесь к решению задачи. Но сначала нужно прочитать теорию и разобрать примеры. Методичка для этого плохо подходит. |
||
| Вернуться к началу | ||
| За это сообщение пользователю Andy "Спасибо" сказали: Isabella |
||
|
На страницу 1, 2 След. | [ Сообщений: 19 ] |
| Похожие темы | Автор | Ответы | Просмотры | Последнее сообщение |
|---|---|---|---|---|
|
Система неравенств
в форуме Алгебра |
4 |
476 |
12 июн 2017, 21:17 |
|
|
Система неравенств С 3
в форуме Алгебра |
3 |
440 |
01 янв 2017, 10:15 |
|
|
Система неравенств
в форуме Алгебра |
4 |
327 |
11 май 2015, 09:35 |
|
|
Система неравенств
в форуме Алгебра |
1 |
451 |
08 май 2015, 19:13 |
|
|
Система неравенств
в форуме Алгебра |
8 |
446 |
19 мар 2017, 09:53 |
|
|
Система неравенств
в форуме Алгебра |
0 |
219 |
26 дек 2016, 15:38 |
|
|
Система неравенств
в форуме Алгебра |
7 |
268 |
15 янв 2022, 13:45 |
|
|
Система неравенств
в форуме Алгебра |
7 |
360 |
17 ноя 2015, 18:56 |
|
|
Система неравенств
в форуме Алгебра |
3 |
252 |
16 янв 2016, 23:08 |
|
|
Система неравенств
в форуме Алгебра |
8 |
634 |
18 фев 2017, 20:26 |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3 |
| Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |