Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 19 ]  На страницу 1, 2  След.
Автор Сообщение
 Заголовок сообщения: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 07:50 
Не в сети
Начинающий
Зарегистрирован:
18 янв 2014, 07:13
Сообщений: 16
Cпасибо сказано: 2
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Помогите пожалуйста найти производные [math]\frac{d y}{d x}[/math] данных функции
[math]y=\arcsin{ \boldsymbol{e}^{-4x}} + \ln{(\boldsymbol{e}^{4x} +\sqrt{\boldsymbol{e}^{4x}-1} )}[/math]

[math]y=x^{\sqrt{1+x^{2}} }[/math]

[math]\boldsymbol{e}^{xy}+y^{2} = \arcsin{x}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 08:51 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15825
Откуда: Беларусь, Минск
Cпасибо сказано: 1036
Спасибо получено:
3473 раз в 3210 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
AntiFreeze, рассмотрим второе задание:
[math]y=x^{\sqrt{1+x^2}},[/math]

[math]\ln{y}=\sqrt{1+x^2}\ln{x},[/math]

[math](\ln{y})'=\bigg(\sqrt{1+x^2}\ln{x}\bigg)',[/math]

[math]\frac{y'}{y}=\frac{x}{\sqrt{1+x^2}}\ln{x}+\frac{\sqrt{1+x^2}}{x},[/math]

[math]\frac{y'}{y}=\frac{x^2 \ln{x}+(1+x^2)}{x\sqrt{1+x^2}}=\frac{x^2(1+\ln{x})+1}{x\sqrt{1+x^2}},[/math]

[math]y'=y\frac{x^2(1+\ln{x})+1}{x\sqrt{1+x^2}}=\frac{x^{\sqrt{1+x^2}}(x^2(1+\ln{x})+1)}{x\sqrt{1+x^2}}=\frac{x^{\sqrt{1+x^2}-1}(x^2(1+\ln{x})+1)}{\sqrt{1+x^2}}.[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Andy "Спасибо" сказали:
AntiFreeze
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 09:07 
Не в сети
Начинающий
Зарегистрирован:
18 янв 2014, 07:13
Сообщений: 16
Cпасибо сказано: 2
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Andy
Если не трудно можно остальные? Просто спасаешь от не сдачи матана.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 09:16 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15825
Откуда: Беларусь, Минск
Cпасибо сказано: 1036
Спасибо получено:
3473 раз в 3210 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
AntiFreeze писал(а):
Andy
Если не трудно можно остальные? Просто спасаешь от не сдачи матана.

AntiFreeze, сочувствую, но полагаю, что предъявив преподавателю решённые примеры, Вы всё равно математический анализ не сдадите. Достаточно будет какого-нибудь вопроса от преподавателя... Поэтому предлагаю не пожалеть время, а рассмотреть примеры здесь:

Начните решать примеры самостоятельно. Я в меру своих возможностей буду на связи и постараюсь Вам помочь, но решать всё Вы будете сами. :)

Мне тоже приходится временами заменять штатных преподавателей на своей кафедре и сталкиваться с математической безграмотностью студентов, мешающей усвоению специальных дисциплин. Поэтому оказывать Вам "медвежью услугу" не хочется.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 09:47 
Не в сети
Начинающий
Зарегистрирован:
18 янв 2014, 07:13
Сообщений: 16
Cпасибо сказано: 2
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Andy
Преподаватель не задаст вопросов, ему просто нужно отдать решение

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 09:51 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15825
Откуда: Беларусь, Минск
Cпасибо сказано: 1036
Спасибо получено:
3473 раз в 3210 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
AntiFreeze, я готов Вам помочь, но решать за Вас не стану. :)

Какие у Вас проблемы с первым заданием? Таблица производных под руками у Вас есть?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 09:56 
Не в сети
Начинающий
Зарегистрирован:
18 янв 2014, 07:13
Сообщений: 16
Cпасибо сказано: 2
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
Andy
в интернете есть таблица, я не могу понять способ решения и как его применить

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 09:58 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15825
Откуда: Беларусь, Минск
Cпасибо сказано: 1036
Спасибо получено:
3473 раз в 3210 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
AntiFreeze, чему равна производная суммы двух функций одного аргумента? [math](u+v)'=...[/math]?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 09:59 
Не в сети
Начинающий
Зарегистрирован:
18 янв 2014, 07:13
Сообщений: 16
Cпасибо сказано: 2
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
u' + v'

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Найти производные dy/dx функции
СообщениеДобавлено: 18 янв 2014, 10:02 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
16 июл 2011, 09:33
Сообщений: 15825
Откуда: Беларусь, Минск
Cпасибо сказано: 1036
Спасибо получено:
3473 раз в 3210 сообщениях
Очков репутации: 669

Добавить очки репутацииУменьшить очки репутации
AntiFreeze, правильно. Дальше:
[math](\arcsin{u(x)})'=...[/math]?

[math](\ln{u(x)})'=...[/math]?

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 19 ]  На страницу 1, 2  След.

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Найти производные функции

в форуме Дифференциальное исчисление

zzzina-z

3

121

06 дек 2013, 19:52

Найти производные функции

в форуме Дифференциальное исчисление

Yamaha45rus

3

251

14 окт 2013, 16:41

Найти производные функции

в форуме Дифференциальное исчисление

Kiryanovth

1

125

02 июн 2016, 18:34

Найти производные сложной функции

в форуме Дифференциальное исчисление

Sonnoe Chudo

3

166

15 окт 2014, 22:11

Найти производные сложной функции

в форуме Интегральное исчисление

Bilbo2015

3

131

22 мар 2015, 11:15

Для заданной функции f(x,y,z) найти частные производные

в форуме Дифференциальное исчисление

Icewinder

0

175

20 дек 2012, 21:20

Требуется найти производные функции предел и интеграл

в форуме Интегральное исчисление

Lega80

1

280

04 ноя 2014, 04:05

Найти частные производные функции двух переменных

в форуме Аналитическая геометрия и Векторная алгебра

Sufir

5

236

24 дек 2014, 20:29

Найти частные производные и полный дифференциал функции

в форуме Дифференциальное исчисление

arrapato

10

455

18 апр 2015, 14:38

Найти первую и вторую производные функции с логарифмом

в форуме Дифференциальное исчисление

DjamBo92

4

357

06 ноя 2012, 14:01


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 7


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved