Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 14 ]  На страницу 1, 2  След.
Автор Сообщение
 Заголовок сообщения: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 11:24 
Не в сети
Beautiful Mind
Зарегистрирован:
26 май 2014, 08:50
Сообщений: 1122
Cпасибо сказано: 672
Спасибо получено:
10 раз в 10 сообщениях
Очков репутации: 4

Добавить очки репутацииУменьшить очки репутации
При каких значениях a и b, уравнение (x-a)^3 - (x-b)^3 = b^3-a^3 имеет единственное решение?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 11:51 
Не в сети
Последняя инстанция
Зарегистрирован:
17 окт 2013, 19:46
Сообщений: 1445
Cпасибо сказано: 121
Спасибо получено:
615 раз в 486 сообщениях
Очков репутации: 163

Добавить очки репутацииУменьшить очки репутации
Ваши соображения?

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 12:14 
Не в сети
Light & Truth
Зарегистрирован:
28 мар 2014, 23:59
Сообщений: 6375
Cпасибо сказано: 645
Спасибо получено:
522 раз в 488 сообщениях
Очков репутации: 47

Добавить очки репутацииУменьшить очки репутации
Нули

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 12:39 
Не в сети
Последняя инстанция
Зарегистрирован:
17 окт 2013, 19:46
Сообщений: 1445
Cпасибо сказано: 121
Спасибо получено:
615 раз в 486 сообщениях
Очков репутации: 163

Добавить очки репутацииУменьшить очки репутации
ivashenko писал(а):
Нули
ivashenko, единственное и бесконечно много - разные вещи.

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Shadows "Спасибо" сказали:
ivashenko
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 13:04 
Не в сети
Light & Truth
Зарегистрирован:
28 мар 2014, 23:59
Сообщений: 6375
Cпасибо сказано: 645
Спасибо получено:
522 раз в 488 сообщениях
Очков репутации: 47

Добавить очки репутацииУменьшить очки репутации
Согласен

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 13:35 
Не в сети
Свет и истина
Аватара пользователя
Зарегистрирован:
30 мар 2010, 11:03
Сообщений: 7479
Cпасибо сказано: 526
Спасибо получено:
3644 раз в 2901 сообщениях
Очков репутации: 745

Добавить очки репутацииУменьшить очки репутации
У меня получилось а=-b ( и не равны нулю)

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю pewpimkin "Спасибо" сказали:
sfanter, victor1111
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 14:17 
Не в сети
Light & Truth
Зарегистрирован:
28 мар 2014, 23:59
Сообщений: 6375
Cпасибо сказано: 645
Спасибо получено:
522 раз в 488 сообщениях
Очков репутации: 47

Добавить очки репутацииУменьшить очки репутации
При a=b уравнение также имеет бесконечное множество решений, т.е. справедливо для любого x.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 14:30 
Не в сети
Beautiful Mind
Зарегистрирован:
07 авг 2013, 15:21
Сообщений: 1027
Откуда: г. Липецк
Cпасибо сказано: 190
Спасибо получено:
126 раз в 118 сообщениях
Очков репутации: 16

Добавить очки репутацииУменьшить очки репутации
ivashenko писал(а):
При a=b уравнение также имеет бесконечное множество решений, т.е. справедливо для любого x.

Читаем условие задачи.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 14:57 
Не в сети
Light & Truth
Зарегистрирован:
28 мар 2014, 23:59
Сообщений: 6375
Cпасибо сказано: 645
Спасибо получено:
522 раз в 488 сообщениях
Очков репутации: 47

Добавить очки репутацииУменьшить очки репутации
Решение - это значение x:)

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Уравнение с параметром
СообщениеДобавлено: 13 окт 2014, 15:26 
Не в сети
Light & Truth
Зарегистрирован:
28 мар 2014, 23:59
Сообщений: 6375
Cпасибо сказано: 645
Спасибо получено:
522 раз в 488 сообщениях
Очков репутации: 47

Добавить очки репутацииУменьшить очки репутации
Предполагаю, что a,b должны быть комплексными либо мнимыми.

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему    На страницу 1, 2  След.  Страница 1 из 2 [ Сообщений: 14 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Уравнение с параметром

в форуме Алгебра

darkyn555555

4

369

17 апр 2018, 22:56

Уравнение с параметром

в форуме Алгебра

Delic

9

501

20 июн 2016, 00:17

Уравнение с параметром

в форуме Алгебра

Evgenii123456

11

317

25 окт 2021, 17:21

Уравнение с параметром

в форуме Начала анализа и Другие разделы школьной математики

Nas_tya+-

23

1570

18 апр 2015, 21:11

Уравнение с параметром

в форуме Тригонометрия

lllulll

4

667

14 дек 2014, 14:15

Уравнение с параметром

в форуме Алгебра

nicat

10

752

30 июн 2015, 22:08

Уравнение с параметром

в форуме Алгебра

WhiplHann

20

2143

28 июн 2016, 17:55

Уравнение с параметром

в форуме Алгебра

QUQUP

1

445

18 фев 2019, 06:17

Уравнение с параметром

в форуме Алгебра

dazzle

3

608

25 мар 2017, 11:15

Уравнение с параметром

в форуме Алгебра

powerafin

14

333

18 июл 2024, 16:52


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved