Дискуссионный математический форумМатематический форум
Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 3 часа [ Летнее время ]
новый онлайн-сервис
число, сумма и дата прописью

Часовой пояс: UTC + 3 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 8 ] 
Автор Сообщение
 Заголовок сообщения: Логарифмическое неравенство
СообщениеДобавлено: 27 мар 2014, 18:12 
Не в сети
Начинающий
Зарегистрирован:
26 мар 2014, 10:58
Сообщений: 7
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
log[x+5]((3-x)/x)^4 + log[x+5](x/(x-3))<=3
log[x+5]((-1(-3+x)/x)^4 + log[x+5](x/(x-3))<=3
log[x+5](((-1^4)*(х-3)^3)/х^4)*(х/х-3)<=3
log[x+5]((х-3)/х)^3 -3<=0
log[x+5]((х-3)/х)^3 - log[х+5](x+5)^3<=0

дальше я не знаю как решать, да и вообще ощущение что изначально не верно решаю.

п.с. [х+5] - оснавание

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Логарифмическое неравенство
СообщениеДобавлено: 27 мар 2014, 18:45 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
18 авг 2013, 14:27
Сообщений: 1978
Откуда: Москва
Cпасибо сказано: 384
Спасибо получено:
1069 раз в 855 сообщениях
Очков репутации: 197

Добавить очки репутацииУменьшить очки репутации
Трудно разобраться в записях, используйте, пожалуйста, редактор формул.
Вроде, всё верно. Теперь тройку из степени выносите перед логарифм (в обоих логарифмах) и делите всё неравенство на 3.
Рассмотрите случаи, когда основание логарифма больше 1 и меньше 1.
И, мне кажется, не нужно было переносить тройку в левую часть.
Не забудьте про ОДЗ!

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Логарифмическое неравенство
СообщениеДобавлено: 27 мар 2014, 18:54 
Не в сети
Начинающий
Зарегистрирован:
26 мар 2014, 10:58
Сообщений: 7
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
в общаге пока, без компа, по этому редактор не могу использовать

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Логарифмическое неравенство
СообщениеДобавлено: 27 мар 2014, 18:57 
Не в сети
Начинающий
Зарегистрирован:
26 мар 2014, 10:58
Сообщений: 7
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
дальше выходит у меня:

log[x+5]((х-3)/(х^2+5х)<=0

отсюда не могу/не умею решать

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Логарифмическое неравенство
СообщениеДобавлено: 27 мар 2014, 19:01 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
18 авг 2013, 14:27
Сообщений: 1978
Откуда: Москва
Cпасибо сказано: 384
Спасибо получено:
1069 раз в 855 сообщениях
Очков репутации: 197

Добавить очки репутацииУменьшить очки репутации
Под окном, где Вы пишете сообщение есть кнопка "Редактор формул", можно его использовать.

Представьте график логарифмической функции.
Если основание логарифма меньше единицы(но больше нуля), то логарифм будет меньше нуля, если...
Аналогично, если основание больше единицы...

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Логарифмическое неравенство
СообщениеДобавлено: 27 мар 2014, 19:08 
Не в сети
Начинающий
Зарегистрирован:
26 мар 2014, 10:58
Сообщений: 7
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации
все же не могу понять

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Логарифмическое неравенство
СообщениеДобавлено: 27 мар 2014, 19:11 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
18 авг 2013, 14:27
Сообщений: 1978
Откуда: Москва
Cпасибо сказано: 384
Спасибо получено:
1069 раз в 855 сообщениях
Очков репутации: 197

Добавить очки репутацииУменьшить очки репутации
График логарифмической функции представляете? У него есть два варианта, если основание логарифмирования больше единицы и если меньше. Погуглите. Обратите внимание, какая часть графика лежит ниже оси абсцисс(логарифм меньше нуля) в каждом из этих случаев.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Логарифмическое неравенство
СообщениеДобавлено: 27 мар 2014, 19:32 
Не в сети
Свет и истина
Аватара пользователя
Зарегистрирован:
30 мар 2010, 11:03
Сообщений: 7479
Cпасибо сказано: 526
Спасибо получено:
3644 раз в 2901 сообщениях
Очков репутации: 745

Добавить очки репутацииУменьшить очки репутации
Изображение

Может и не ошибся

Вернуться к началу
 Профиль  
Cпасибо сказано 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему      Страница 1 из 1 [ Сообщений: 8 ]

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Логарифмическое неравенство

в форуме Алгебра

kucher

6

317

06 фев 2016, 15:47

ЕГЭ логарифмическое неравенство

в форуме Алгебра

SERGEYATAKA

5

422

14 мар 2016, 20:18

Логарифмическое неравенство

в форуме Алгебра

gericht

12

773

21 апр 2015, 19:02

Логарифмическое неравенство

в форуме Алгебра

butusich

6

384

13 май 2018, 20:01

Логарифмическое неравенство

в форуме Алгебра

Maxim2222

2

362

17 апр 2015, 20:24

Логарифмическое неравенство

в форуме Алгебра

Dayl

3

290

27 май 2018, 15:26

Логарифмическое неравенство

в форуме Алгебра

neeara

14

626

29 май 2018, 18:22

Логарифмическое неравенство

в форуме Алгебра

onetwo

3

535

05 май 2015, 16:37

Логарифмическое неравенство.

в форуме Алгебра

neapol

0

244

09 фев 2016, 13:32

Логарифмическое неравенство

в форуме Алгебра

gericht

1

251

05 май 2015, 21:15


Часовой пояс: UTC + 3 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2024 MathHelpPlanet.com. All rights reserved