Дискуссионный математический форумМатематический форум

Математический форум Math Help Planet

Обсуждение и решение задач по математике, физике, химии, экономике

Теоретический раздел
Часовой пояс: UTC + 4 часа [ Летнее время ]
MathHelpPlanet.com RSS-лента Математического форума

Часовой пояс: UTC + 4 часа [ Летнее время ]




Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу 1, 2  След.
Автор Сообщение
 Заголовок сообщения: Основные формулы алгебры
СообщениеДобавлено: 06 дек 2012, 17:40 
Не в сети
Администратор
Аватара пользователя
Зарегистрирован:
23 фев 2010, 23:52
Сообщений: 5947
Откуда: Москва
Cпасибо сказано: 3212
Спасибо получено:
3076 раз в 2247 сообщениях
Очков репутации: 650

Добавить очки репутацииУменьшить очки репутации
Формулы сокращенного умножения

[math]\begin{aligned}&({\color{blue}a}+{\color{blue}b})^2={\color{blue}a}^2+2{\color{blue}a}{\color{blue}b}+{\color{blue}b}^2\\[0pt] &({\color{blue}a}-{\color{blue}b})^2={\color{blue}a}^2-2{\color{blue}a}{\color{blue}b}+{\color{blue}b}^2\\[0pt] &{\color{blue}a}^2-{\color{blue}b}^2=({\color{blue}a}+{\color{blue}b})({\color{blue}a}-{\color{blue}b})\\[0pt] &({\color{blue}a}+{\color{blue}b})^3={\color{blue}a}^3+3{\color{blue}a}^2{\color{blue}b}+3{\color{blue}a}{\color{blue}b}^2+{\color{blue}b}^3\\[0pt] &({\color{blue}a}-{\color{blue}b})^3={\color{blue}a}^3-3{\color{blue}a}^2{\color{blue}b}+3{\color{blue}a}{\color{blue}b}^2-{\color{blue}b}^3\\[0pt] &{\color{blue}a}^3+{\color{blue}b}^3=({\color{blue}a}+{\color{blue}b})({\color{blue}a}^2-{\color{blue}a}{\color{blue}b}+{\color{blue}b}^2)\\[0pt] &{\color{blue}a}^3-{\color{blue}b}^3=({\color{blue}a}-{\color{blue}b})({\color{blue}a}^2+{\color{blue}a}{\color{blue}b}+{\color{blue}b}^2)\\[0pt] &({\color{blue}a}+{\color{blue}b}+{\color{blue}c})^2={\color{blue}a}^2+{\color{blue}b}^2+{\color{blue}c}^2+2{\color{blue}a}{\color{blue}b}+2{\color{blue}a}{\color{blue}c}+2{\color{blue}b}{\color{blue}c}\\[0pt] &{\color{blue}a}^4+{\color{blue}b}^4=({\color{blue}a}^2-\sqrt{2}{\color{blue}a}{\color{blue}b}+{\color{blue}b}^2)({\color{blue}a}^2+\sqrt{2}{\color{blue}a}{\color{blue}b}+{\color{blue}b}^2)\\[0pt] &{\color{blue}a}^4-{\color{blue}b}^4=({\color{blue}a}-{\color{blue}b})({\color{blue}a}+{\color{blue}b})({\color{blue}a}^2+{\color{blue}b}^2) \end{aligned}[/math]

Модуль числа и его свойства

[math]\begin{aligned}&|{\color{blue}a}|= \begin{cases}-{\color{blue}a},& {\color{blue}a}<0,\\ \phantom{-}{\color{blue}a},& {\color{blue}a}\geqslant0.\end{cases}\qquad \begin{aligned}&|{\color{blue}a}|=0~ \Leftrightarrow~ {\color{blue}a}=0\\ &|{\color{blue}a}|\geqslant0,\quad ~{\color{blue}a}\leqslant |{\color{blue}a}|\end{aligned}\\ &|-{\color{blue}a}|=|{\color{blue}a}|,\qquad |{\color{blue}a}\cdot {\color{blue}b}|= |{\color{blue}a}|\cdot |{\color{blue}b}|,\qquad \left|\frac{{\color{blue}a}}{{\color{blue}b}}\right|= \frac{|{\color{blue}a}|}{|{\color{blue}b}|}\\ &|{\color{blue}a}+{\color{blue}b}|\leqslant |{\color{blue}a}|+|{\color{blue}b}|,\qquad |{\color{blue}a}-{\color{blue}b}|\geqslant \bigl||{\color{blue}a}|-|{\color{blue}b}|\bigr|\end{aligned}[/math]


Бином Ньютона

[math]({\color{blue}a}+{\color{blue}b})^n= \sum\limits_{k=0}^{n}C_{n}^{k}{\color{blue}a}^{n-k}{\color{blue}b}^k[/math], где [math]C_{n}^{k}=\frac{n!}{k!\,(n-k)!}[/math]



Степени и их свойства [math]({\color{blue}a},{\color{blue}b}\ne0;~ n\in\mathbb{N})[/math]

[math]\begin{aligned}&{\color{blue}a}^0=1,\qquad {\color{blue}a}^1={\color{blue}a},\qquad {\color{blue}a}^n= \underbrace{{\color{blue}a}\cdot {\color{blue}a}\cdot \ldots\cdot {\color{blue}a}}_{n},\qquad {\color{blue}a}^{-n}=\frac{1}{{\color{blue}a}^n},\qquad {\color{blue}a}^{1 \!\not{\phantom{|}}\,\,n}=\sqrt[n]{{\color{blue}a}},\qquad {\color{blue}a}^{m \!\not{\phantom{|}}\,\,n}=\sqrt[n]{{\color{blue}a}^m}\\[-5pt] &({\color{blue}a}^p)^q= {\color{blue}a}^{p\cdot q},\qquad {\color{blue}a}^p\cdot {\color{blue}a}^q= {\color{blue}a}^{p+q},\qquad ({\color{blue}a}\cdot {\color{blue}b})^p={\color{blue}a}^p\cdot {\color{blue}b}^p,\qquad \frac{{\color{blue}a}^p}{{\color{blue}a}^q}= {\color{blue}a}^{p-q},\qquad \left(\frac{{\color{blue}a}}{{\color{blue}b}}\right)^p= \frac{{\color{blue}a}^p}{{\color{blue}b}^p}\end{aligned}[/math]


Корни и их свойства [math]\bigl({\color{blue}a},{\color{blue}b}>0;~ m,n\in\mathbb{N}\bigr)[/math]

[math]\sqrt[n]{{\color{blue}a}\cdot {\color{blue}b}}= \sqrt[n]{{\color{blue}a}}\cdot \sqrt[n]{{\color{blue}b}},\quad \!\sqrt[n]{\frac{{\color{blue}a}}{{\color{blue}b}}}= \frac{\sqrt[n]{{\color{blue}a}}}{\sqrt[n]{{\color{blue}b}}},\quad \bigl(\sqrt[n]{{\color{blue}a}}\bigr)^m= \sqrt[n]{{\color{blue}a}^m},\quad \sqrt[nk]{{\color{blue}a}^{mk}}= \sqrt[n]{{\color{blue}a}^m},\quad \sqrt[n]{\!\sqrt[m]{{\color{blue}a}}}= \sqrt[nm]{{\color{blue}a}},\quad \sqrt[n]{{\color{blue}a}^{n}}= {\color{blue}a}[/math]


Логарифмы и их свойства [math]({\color{blue}a},{\color{blue}b},{\color{blue}c}>0;~ {\color{blue}a},{\color{blue}b},{\color{blue}c}\ne1)[/math]

[math]\begin{aligned}&\log_{{\color{blue}a}}{\color{blue}b}={\color{blue}c}~ \Leftrightarrow~ {\color{blue}a}^{{\color{blue}c}}={\color{blue}b},\qquad \lg{\color{blue}b}= \log_{10}{\color{blue}b},\qquad \ln{\color{blue}b}= \log_{e}{\color{blue}b}\quad (e\approx2,\!71),\qquad \log_{{\color{blue}a}}{\color{blue}a}=1,\qquad \log_{{\color{blue}a}}\!1=0\\ &{\color{blue}a}^{\log_{{\color{blue}a}}{\color{blue}b}}={\color{blue}b},\qquad \log_{{\color{blue}a}}({\color{blue}b}\cdot {\color{blue}c})= \log_{{\color{blue}a}}{\color{blue}b}+ \log_{{\color{blue}a}}{\color{blue}c},\qquad \log_{{\color{blue}a}} \frac{{\color{blue}b}}{{\color{blue}c}}= \log_{{\color{blue}a}}{\color{blue}b}-\log_{{\color{blue}a}}{\color{blue}c},\qquad \log_{{\color{blue}a}}{\color{blue}b}\,^p= p\log_{{\color{blue}a}}{\color{blue}b}\\ &{\color{blue}c}^{\log_{{\color{blue}a}}{\color{blue}b}}= {\color{blue}b}^{\log_{{\color{blue}a}}{\color{blue}c}},\qquad \log_{{\color{blue}a}}{\color{blue}b}= \frac{1}{\log_{{\color{blue}b}}{\color{blue}a}},\qquad \log_{{\color{blue}a}}b= \frac{\log_{\color{blue}c}{\color{blue}b}}{\log_{{\color{blue}c}}{\color{blue}a}},\qquad \log_{{\color{blue}a}}{\color{blue}b}\cdot \log_{{\color{blue}b}}{\color{blue}c}= \log_{{\color{blue}a}}{\color{blue}c},\qquad \log_{\,{\color{blue}a}^p}{\color{blue}b}= \frac{1}{p}\log_{\,{\color{blue}a}}{\color{blue}b}\end{aligned}[/math]


Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Alexdemath "Спасибо" сказали:
Coil, Daria2195, Dor28, Excellente, Jazzman, kosov, Laplacian, mad_math, n3ksi, okeeeey, RieLL, rumik, sfanter, Vadim Shlovikov, valentina
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 06 дек 2012, 17:44 
Не в сети
Light & Truth
Зарегистрирован:
15 авг 2010, 16:54
Сообщений: 4416
Откуда: Latvija
Cпасибо сказано: 2370
Спасибо получено:
1645 раз в 1241 сообщениях
Очков репутации: 376

Добавить очки репутацииУменьшить очки репутации
Спасибо. Проблема справочника давно уже созрела :good:

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 06 дек 2012, 17:58 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 20:13
Сообщений: 10176
Откуда: Москва
Cпасибо сказано: 921
Спасибо получено:
3102 раз в 2704 сообщениях
Очков репутации: 620

Добавить очки репутацииУменьшить очки репутации
Надо бы расширить полезными тождествами, например:

[math]1+2+3+...+n=\frac 12 n(n+1)[/math]

[math]1+3+5+...+2n+1=(n+1)^2[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Avgust "Спасибо" сказали:
Alexdemath
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 06 дек 2012, 18:11 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
15 май 2011, 11:27
Сообщений: 7858
Cпасибо сказано: 626
Спасибо получено:
7053 раз в 5486 сообщениях
Очков репутации: 317

Добавить очки репутацииУменьшить очки репутации
Стоит добавить тождество [math]a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2} +b^{2}+c^{2}-ab-bc-ca)[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю andrei "Спасибо" сказали:
Alexdemath, Tantan
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 06 дек 2012, 20:42 
Не в сети
Оракул
Зарегистрирован:
12 сен 2010, 13:46
Сообщений: 986
Cпасибо сказано: 9
Спасибо получено:
167 раз в 148 сообщениях
Очков репутации: 20

Добавить очки репутацииУменьшить очки репутации
В разделе "Корни и их свойства" в последнем тождестве надо выкинуть модуль - а же положительное

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю MihailM "Спасибо" сказали:
Alexdemath
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 06 дек 2012, 21:47 
Не в сети
Администратор
Аватара пользователя
Зарегистрирован:
23 фев 2010, 23:52
Сообщений: 5947
Откуда: Москва
Cпасибо сказано: 3212
Спасибо получено:
3076 раз в 2247 сообщениях
Очков репутации: 650

Добавить очки репутацииУменьшить очки репутации
Avgust писал(а):
Надо бы расширить полезными тождествами, например:
[math]1+2+3+...+n=\frac 12 n(n+1)[/math]
[math]1+3+5+...+2n+1=(n+1)^2[/math]

Это будет в теме о прогрессиях.

andrei писал(а):
Стоит добавить тождество [math]a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2} +b^{2}+c^{2}-ab-bc-ca)[/math]

Это будет в более продвинутой теме.

Вернуться к началу
 Профиль  
Cпасибо сказано 
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 07 дек 2012, 00:04 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
13 окт 2010, 14:09
Сообщений: 18470
Откуда: Пермь + Одесса
Cпасибо сказано: 11132
Спасибо получено:
5044 раз в 4557 сообщениях
Очков репутации: 684

Добавить очки репутацииУменьшить очки репутации
Неплохо бы свойства степеней, корней и логарифмов тоже в столбик расположить.

Такое ещё полезное свойство помню [math]\log_a{b}\cdot\log_b{c}=\log_a{c}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю mad_math "Спасибо" сказали:
Alexdemath
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 07 дек 2012, 00:14 
Не в сети
Light & Truth
Зарегистрирован:
15 авг 2010, 16:54
Сообщений: 4416
Откуда: Latvija
Cпасибо сказано: 2370
Спасибо получено:
1645 раз в 1241 сообщениях
Очков репутации: 376

Добавить очки репутацииУменьшить очки репутации
[math]{\log _{{a^m}}}b = \frac{1}{m}{\log _a}b[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю valentina "Спасибо" сказали:
Alexdemath
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 07 дек 2012, 00:19 
Не в сети
Light & Truth
Аватара пользователя
Зарегистрирован:
03 апр 2012, 20:13
Сообщений: 10176
Откуда: Москва
Cпасибо сказано: 921
Спасибо получено:
3102 раз в 2704 сообщениях
Очков репутации: 620

Добавить очки репутацииУменьшить очки репутации
В логарифмах дано общее свойство, но хорошо бы добавить частный случай:

[math]\log\, _ a{b} = \frac{\ln{b}}{\ln {a}}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Avgust "Спасибо" сказали:
Alexdemath, sfanter
 Заголовок сообщения: Re: Основные формулы алгебры
СообщениеДобавлено: 16 сен 2013, 23:28 
Не в сети
Профи
Зарегистрирован:
11 сен 2013, 14:08
Сообщений: 364
Cпасибо сказано: 5
Спасибо получено:
159 раз в 137 сообщениях
Очков репутации: 35

Добавить очки репутацииУменьшить очки репутации
Формула сложных радикалов
[math]\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\frac{a-\sqrt{a^2-b}}{2}}[/math]

Вернуться к началу
 Профиль  
Cпасибо сказано 
За это сообщение пользователю Alexander N "Спасибо" сказали:
Alexdemath, mad_math
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу 1, 2  След.

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Некоторые задачи на основные формулы вычисления вероятностей

в форуме Теория вероятностей

Crossproi

38

4652

29 сен 2012, 20:13

Чи загальнозначима формулы ф алгебры высказываний

в форуме Дискретная математика, Теория множеств и Логика

Chiko

1

160

20 ноя 2014, 21:06

Установить вид формулы алгебры логики

в форуме Дискретная математика, Теория множеств и Логика

EEEVVVA

5

1062

08 дек 2012, 22:54

Даны формулы алгебры высказываний Φ1 и Φ2

в форуме Дискретная математика, Теория множеств и Логика

magical3000

3

263

08 янв 2015, 14:40

Построить ДНФ для заданной формулы алгебры высказываний

в форуме Дискретная математика, Теория множеств и Логика

valdemar

19

1369

01 май 2013, 21:08

Решить задачу с помощью формулы полной вероятности и формулы

в форуме Теория вероятностей

Elena_sh

12

584

23 ноя 2014, 02:46

Основные законы арифметики - аксиома или теорема?

в форуме Линейная и Абстрактная алгебра

eric-k

12

820

02 июн 2014, 01:16

Выразить через основные симметрические многочлены

в форуме Линейная и Абстрактная алгебра

eclipse

0

486

17 дек 2013, 16:53

Выразить через основные симметричные многочлены

в форуме Линейная и Абстрактная алгебра

andreta

3

545

09 дек 2013, 17:46

выразить через основные симметричные многочлены

в форуме Линейная и Абстрактная алгебра

andreta

5

500

10 дек 2013, 17:23


Часовой пояс: UTC + 4 часа [ Летнее время ]



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 9


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  

Яндекс.Метрика

Copyright © 2010-2016 MathHelpPlanet.com. All rights reserved