Взаимное расположение прямых в пространстве
Возможны четыре различных случая расположения двух прямых в пространстве:
– прямые скрещивающиеся, т.е. не лежат в одной плоскости; – прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку; – прямые параллельные, т.е. лежат в одной плоскости и не пересекаются; – прямые совпадают.
 Получим признаки этих случаев взаимного расположения прямых, заданных каноническими уравнениями
где — точки, принадлежащие прямым и соответственно, a — направляющие векторы (рис.4.34). Обозначим через вектор, соединяющий заданные точки.
Перечисленным выше случаям взаимного расположения прямых и соответствуют следующие признаки:
– прямые и скрещивающиеся векторы не компланарны;
– прямые и пересекаются векторы компланарны, а векторы не коллинеарны;
– прямые и параллельные векторы коллинеарны, а векторы не коллинеарны;
– прямые и совпадают векторы коллинеарны.
Эти условия можно записать, используя свойства смешанного и векторного произведений. Напомним, что смешанное произведение векторов в правой прямоугольной системе координат находится по формуле:
Равенство нулю смешанного произведения векторов является необходимым и достаточным условием их компланарности. Поэтому:
– прямые и скрещивающиеся определитель отличен от нуля;
– прямые и пересекаются определитель равен нулю, а вторая и третья его строки не пропорциональны, т.е. 
– прямые и параллельные вторая и третья строки определителя пропорциональны, т.е. а первые две строки не пропорциональны, т.е. 
– прямые и совпадают все строки определителя пропорциональны, т.е. 
Расстояние между параллельными прямыми
Найдем расстояние между параллельными прямыми, заданными каноническими уравнениями (рис.4.35)

где — произвольные точки на прямых и соответственно, а координаты направляющих векторов прямых пропорциональны: 
Искомое расстояние равно высоте параллелограмма, построенного на векторах и , и может быть найдено по формуле (4.35).
Расстояние между скрещивающимися прямыми
Напомним, что расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра, т.е. кратчайшее расстояние между точками этих прямых.
 Найдем расстояние между скрещивающимися прямыми, заданными каноническими уравнениями
где — произвольные точки на прямых и соответственно.
Искомое расстояние равно высоте параллелепипеда, построенного на векторах (рис.4.36), т.е.
![d=\frac{|\langle\vec{m},\vec{p}_{1},\vec{p}_{2}\rangle|}{|[\vec{p}_{1},\vec{p}_{2}]|}\,,]() (4.38) где
— смешанное и векторное произведения векторов. Как показано выше, прямые и скрещивающиеся тогда и только тогда, когда векторы некомпланарные, т.е.
Отсюда следует, что вторая и третья строки не пропорциональны. Поэтому векторы неколлинеарные, т.е. и знаменатель в правой части (4.38) отличен от нуля.
Угол между прямыми
Угол между прямыми определяется как угол между их направляющими векторами. Поэтому величина острого угла между прямыми
вычисляется по формуле
 (4.39)
Пример 4.16. Найти расстояние между прямой, проходящей через точки , и осью абсцисс. Найти величину острого угла между этими прямыми.
Решение. Каноническое уравнение оси абсцисс имеет вид так как ось проходит через точку а — ее направляющий вектор. Каноническое уравнение прямой получено в примере 4.15,"а": 
Полагая по формуле (4.38) получаем:
Острый угол находим по формуле (4.39):
Взаимное расположение прямой и плоскости
Возможны три случая взаимного расположения прямой и плоскости:
– прямая и плоскость пересекаются, т.е. имеют одну общую точку; – прямая и плоскость параллельны, т.е. не имеют общих точек; – прямая лежит в плоскости, т.е. все точки прямой принадлежат плоскости.
Получим признаки для всех этих случаев. Пусть прямая и плоскость заданы уравнениями:
т.е. прямая проходит через точку коллинеарно вектору а плоскость перпендикулярна вектору 
Перечисленным выше случаям взаимного расположения прямой и плоскости соответствуют следующие признаки:
– прямая и плоскость пересекаются векторы и не ортогональны (рис.4.37,а); – прямая и плоскость параллельны векторы и ортогональны, а точка не принадлежит плоскости (рис.4.37,б); – прямая лежит в плоскости векторы и ортогональны, а точка принадлежит плоскости (рис.4.37,в).
Учитывая свойство скалярного произведения векторов получаем:
– прямая и плоскость пересекаются ;
– прямая и плоскость параллельны 
– прямая лежит в плоскости 
Угол между прямой и плоскостью
 Угол между прямой и плоскостью определяется как угол между прямой и ее ортогональной проекцией на плоскость (рис.4.38). Из двух смежных углов и , как правило, выбирают меньший. Если прямая перпендикулярна плоскости (ее ортогональная проекция на плоскость является точкой), то угол считается равным . Если обозначить и углы, образованные наклонной с перпендикуляром к плоскости, то
Поскольку угол (или ) равен углу между направляющим вектором прямой и нормалью к плоскости , то . Записывая скалярное произведение через координаты множителей, получаем формулу вычисления угла между прямой и плоскостью:
 (4.40)
Отсюда, например, следует полученное ранее необходимое условие параллельности прямой и плоскости.
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|