Уравнения прямых в пространстве
Уравнение прямой как линии пересечения двух плоскостей
Пусть в координатном пространстве (в прямоугольной системе координат) две плоскости заданы общими уравнениями
в которых коэффициенты при неизвестных непропорциональны, т.е. . Это условие означает, что плоскости и пересекаются (см. условие (4.25)), поскольку их нормали и неколлинеарны (рис.4.25). Тогда линия пересечения плоскостей описывается системой уравнений
 (4.31)
Система (4.31) называется общим уравнением прямой в пространстве.
Пример 4.13. В координатном пространстве (в прямоугольной системе координат) заданы вершины треугольника (рис.4.26). Требуется составить уравнение прямой, содержащей высоту треугольника.
Решение. Прямая является линией пересечения двух плоскостей: плоскости , треугольника и плоскости , проходящей через точку перпендикулярно вектору (рис.4.26). По формуле (4.21) составим уравнение плоскости проходящей через три точки 
По формуле (4.14) составим уравнение плоскости , проходящей через точку перпендикулярно вектору 
Следовательно, общее уравнение (4.31) прямой имеет вид 
Параметрическое уравнение прямой в пространстве
Напомним, что направляющий вектором прямой называется ненулевой вектор, коллинеарный этой прямой, т.е. принадлежащий или параллельный ей.
Пусть в координатном пространстве заданы точка и ненулевой вектор (рис.4.27). Требуется составить уравнение прямой, коллинеарной вектору и проходящей через точку .
Выберем на прямой произвольную точку . Обозначим — радиус-векторы точек и (рис.4.28).
Точка принадлежит заданной прямой тогда и только тогда, когда векторы и коллинеарны. Запишем условие коллинеарности: , где — некоторое действительное число (параметр). Учитывая, что , получим векторное параметрическое уравнение прямой в пространстве:
 (4.32)
где — направляющий вектор прямой, а — радиус-вектор заданной точки принадлежащей прямой.
Координатная форма записи уравнения (4.32) называется параметрическим уравнением прямой в пространстве
 (4.33)
где — координаты направляющего вектора прямой. Параметр в уравнениях (4.32),(4.33) имеет следующий геометрический смысл: величина пропорциональна расстоянию от заданной точки до точки . Физический смысл параметра в параметрических уравнениях (4.32),(4.33) — это время при равномерном и Прямолинейном движении точки по прямой. При точка совпадает с заданной точкой . При возрастании параметра движение происходит в направлении направляющего вектора.
Каноническое уравнение прямой в пространстве
Выразим параметр из каждого уравнения системы (4.33): , а затем исключим этот параметр:
 (4.34)
Уравнение (4.34) называется каноническим уравнением прямой в пространстве. В этом уравнении коэффициенты не равны нулю одновременно, так как это координаты направляющего вектора прямой.
Замечания 4.6.
1. Если один или два из трех знаменателей дробей в (4.34) равны нулю, то считается, что соответствующий числитель дроби равен нулю. Например:
а) каноническое уравнение — это уравнение прямой, параллельной оси аппликат (рис.4.29,а);
б) каноническое уравнение — это уравнение прямой, параллельной координатной плоскости (рис.4.29,б).
2. Направляющий вектор прямой определяется неоднозначно. Например, любой ненулевой вектор , где , также является направляющим вектором для той же прямой.
Переход от общего уравнение к каноническому
3. Для перехода от общего уравнения прямой (4.31) к каноническому (4.34) нужно выполнить следующие действия:
1) найти любое решение системы определяя тем самым координаты точки , принадлежащей прямой;
2) найти направляющий вектор прямой как векторное произведение нормалей заданных плоскостей:
3) записать каноническое уравнение (4.34) с учетом пунктов 1 и 2.
4. Чтобы перейти от канонического уравнения к общему, достаточно двойное равенство (4.34) записать в виде системы
 и привести подобные члены.
5. Чтобы перейти от канонического уравнения к параметрическому, следует приравнять каждую дробь в уравнении (4.34) параметру t и записать полученные равенства в виде системы (4.33):
6. Если в каноническом уравнении (4.34) прямой фиксировать координаты точки , а коэффициентам придавать произвольные значения (не равные нулю одновременно), то получим уравнение связки прямых с центром в точке , т.е. совокупность всех прямых, проходящих через точку .
7. Параметрическое (4.33) и каноническое (4.34) уравнения прямой, полученные в прямоугольной системе координат, имеют тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнениях остается прежним.
Пример 4.14. В координатном пространстве (в прямоугольной системе координат) заданы вершины треугольника (рис. 4.30). Требуется:
 а) составить каноническое уравнение прямой, содержащей высоту треугольника; б) составить общее уравнение прямой, содержащей биссектрису треугольника.
Решение. а) Общее уравнение прямой получено в примере 4.13: Перейдем от общего уравнения к каноническому.
1) Найдем любое решение системы, например, (это координаты точки ).
2) Найдем направляющий вектор прямой как векторное произведение нормалей заданных плоскостей
3) Запишем каноническое уравнение (4.34): .
б) Сначала составим каноническое уравнение прямой . Для этого нужно найти направляющий вектор этой прямой. Учитывая, что диагональ ромба является биссектрисой, , где и — единичные векторы, одинаково направленные с векторами и соответственно. Находим
Составляем каноническое уравнение прямой .
Записывая двойное равенство в виде системы, получаем общее уравнение прямой 
 Расстояние от точки до прямой в пространстве
Найдем расстояние от точки до прямой , заданной каноническим уравнением (рис.4.31)):
Искомое расстояние равно высоте параллелограмма, построенного на векторах
 и  , то есть.
 (4.35)
Уравнение прямой, проходящей через две заданные точки
 Пусть в координатном пространстве заданы две точки и . Требуется составить уравнение прямой, проходящей через заданные точки.
Как показано в разд., точка принадлежит прямой тогда и только тогда, когда ее радиус-вектор удовлетворяет условию (рис.4.32): , где — некоторое действительное число (параметр). Это уравнение, а также его координатную форму
 (4.36)
будем называть аффинным уравнением прямой, проходящей через две точки и .
Выражая параметр из каждого уравнения системы (4.36), получаем: . Исключая параметр , приходим к уравнению прямой, проходящей через две точки и :
 (4.37)
Уравнение (4.37) можно получить из канонического уравнения (4.34), выбирая в качестве направляющего вектора вектор т.е. подставляя 
 Пример 4.15. В координатном пространстве (в прямоугольной системе координат) заданы вершины треугольника (рис.4.33). Требуется: а) составить уравнение прямой ; б) составить уравнение прямой, содержащей медиану треугольника; в) найти высоту треугольника, опущенную на сторону .
Решение. а) Записываем уравнение (4.37) прямой, проходящей через точки 
б) Находим координаты середины стороны . Составляем уравнение (4.37) прямой 
в) Искомую высоту находим по формуле (4.35), полагая и 
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|