Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Свойства аксиоматических теорий | |
---|---|
Онлайн-сервисы
Нахождение НОД и НОК
Разложение числа на простые множители
Сравнения по модулю
Операции над множествами
Операции над векторами
Разложение вектора по базису. Доказательство, что векторы образуют базис
Чертёж треугольника по координатам вершин
Решение треугольника
Решение Пирамиды
Построение Пирамиды по координатам вершин
Чертёж многоугольника по координатам вершин
Решение систем методом Крамера и Матричным
Онлайн построение графика кривой 2-го порядка
Определение вида кривой или поверхности 2-го порядка по инвариантам
МНК и регрессионный анализ Онлайн + графики
Онлайн число, сумма и дата прописью
Алгоритмы JavaScript
Алгоритмы поиска
Алгоритмы сортировки
Уникальные элементы массива
Объединение, пересечение и разность массивов
НОД и НОК
Операции над матрицами
Дата прописью
Введение в анализ
Функции: понятие, определение, графики
Непрерывность функции
Исследование функции и построение графика
Теория множеств
Множества: понятие, определение, примеры
Точечные множества
Замкнутые и открытые множества
Мера множества
Группы, кольца, поля в математике
Поле комплексных чисел
Кольцо многочленов
Основная теорема алгебры и ее следствия
Математическая логика
Алгебра высказываний
Аксиоматика и логические рассуждения
Методы доказательств теорем
Алгебра высказываний и операции над ними
Формулы алгебры высказываний
Тавтологии алгебры высказываний
Логическая равносильность формул
Нормальные формы для формул высказываний
Логическое следование формул
Приложение алгебры высказываний для теорем
Дедуктивные и индуктивные умозаключения
Решение логических задач
Принцип полной дизъюнкции
Булевы функции
Множества, отношения и функции в логике
Булевы функции от одного и двух аргументов
Булевы функции от n аргументов
Системы булевых функций
Применение булевых функций к релейно-контактным схемам
Релейно-контактные схемы в ЭВМ
Практическое применение булевых функций
Теория формального
Формализованное исчисление высказываний
Полнота и другие свойства формализованного исчисления высказываний
Независимость системы аксиом формализованного исчисления высказываний
Логика предикатов
Логика предикатов
Логические операции над предикатами
Кванторные операции над предикатами
Формулы логики предикатов
Тавтологии логики предикатов
Преобразования формул и следование их предикатов
Проблемы разрешения для общезначимости и выполнимости формул
Применение логики предикатов в математике
Строение математических теорем
Аристотелева силлогистика и методы рассуждений
Принцип полной дизъюнкции в предикатной форме
Метод полной математической индукции
Необходимые и достаточные условия
Логика предикатов и алгебра множеств
Формализованное исчисление предикатов
Неформальные и формаль-ные аксиоматические теории
Неформальные аксиоматические теории
Свойства аксиоматических теорий
Формальные аксиоматические теории
Формализация теории аристотелевых силлогизмов
Свойства формализованного исчисления предикатов
Формальные теории первого порядка
Формализация математической теории
Теория алгоритмов
Интуитивное представление об алгоритмах
Машины Тьюринга и тезис
Рекурсивные функции
Нормальные алгоритмы Маркова
Разрешимость и перечислимость множеств
Неразрешимые алгоритмические проблемы
Теорема Гёделя о неполноте формальной арифметики
Математическая логика и компьютеры
Дискретная математика
Множества и отношения
Теория множеств: понятия и определения
Операции над множествами
Кортеж и декартово произведение множеств
Соответствия и бинарные отношения на множествах
Операции над соответствиями на множествах
Семейства множеств
Специальные свойства бинарных отношений
Отношения эквивалентности на множестве
Упорядоченные множества
Теорема о неподвижной точке
Мощность множества
Парадокс Рассела
Метод характеристических функций
Группы и кольца
Алгебраические структуры и операции
Группоиды, полугруппы, группы
Кольца, тела, поля
Области целостности в теории колец
Модули и линейные пространства
Подгруппы и подкольца
Теорема Лагранжа о порядке конечной группы
Гомоморфизмы групп и нормальные делители
Гомоморфизмы и изоморфизмы колец
Алгебра кватернионов
Полукольца и булевы алгебры
Полукольца: определение, аксиомы, примеры
Замкнутые полукольца
Полукольца и системы линейных уравнений
Булевы алгебры и полукольца
Решетки и полурешетки
Алгебраические системы
Алгебраические системы: модели и алгебры
Подсистемы алгебраических систем
Конгруэнции и фактор-системы
Гомоморфизмы алгебраических систем
Прямые произведения алгебраических систем
Конечные булевы алгебры
Многосортные алгебры
Теория графов
Теория графов: основные понятия и определения
Способы представления графов
Неориентированные и ориентированные деревья
Остовное дерево и алгоритм Краскала
Методы систематического обхода вершин графа
Алгоритмы поиска в глубину и ширину в графах
Задача о путях во взвешенных ориентированных графах
Изоморфизм, гомоморфизм и автоморфизм графов
Топологическая сортировка вершин графа
Элементы цикломатики в теории графов
Булева алгебра и функции
Булевы функции и булев куб
Таблицы булевых функций и булев оператор
Равенство булевых функций. Фиктивные переменные
Формулы и суперпозиции булевых функций
Дизъюнктивные и конъюнктивные нормальные формы
Построение минимальных ДНФ
Теорема Поста и классы
Критерий Поста
Схемы из функциональных элементов
Конечные автоматы и регулярные языки
Конечные автоматы и регулярные языки
Алфавит, слово, язык в программировании
Порождающие грамматики (грамматики Хомского)
Классификация грамматик и языков
Регулярные языки и регулярные выражения
Конечные автоматы
Допустимость языка конечным автоматом
Теорема Клини
Детерминизация конечных автоматов
Минимизация конечных автоматов
Лемма о разрастании для регулярных языков
Обоснование алгоритма детерминизации автоматов
Конечные автоматы с выходом
Морфизмы и конечные подстановки
Машины Тьюринга
Контекстно-свободные языки
Контекстно-свободные языки и грамматики
Приведенная форма КС-грамматики
Лемма о разрастании для КС-языков
Магазинные автоматы (автомат с магазинной памятью)
Алгоритм построения МП-автомата по КС-грамматике
Алгоритм построения КС-грамматики по МП-автомату
Алгебраические свойства КС-языков
Основное свойство суперпозиции КС-языков
Пересечение контекстно-свободных языков
Методы синтаксического анализа КС-языков
Восходящий синтаксический анализ и LR(k)-грамматики
Семантика формальных языков
Принцип индукции по неподвижной точке
Графовое представление МП-автоматов
Интегральное исчисление
Неопределённый и определённый
Неопределенный и определенный интегралы
Свойства интегралов
Интегрирование по частям
Интегрирование методом замены переменной
Интегрирование различных рациональных функций
Интегрирование различных иррациональных функций
Интегрирование различных тригонометрических функций
Определенный интеграл и его основные свойства
Необходимое и достаточное условие интегрируемости
Теоремы существования первообразной
Свойства определенных интегралов
Несобственные интегралы
Интегральное определение логарифмической функции
Приложения интегралов
Вычисление площадей плоских фигур
Площади фигур в различных координатах
Вычисление объемов тел с помощью интегралов
Объём тела вращения
Вычисление длин дуг кривых
Формулы длины дуги регулярной кривой
Кривизна плоской кривой
Площадь поверхности вращения тела
Интегралы в физике
Статические моменты и координаты центра тяжести
Теоремы Гульдина–Паппа
Вычисление моментов инерции
Другие приложения интегралов в физике
Основные интегралы
Вариационное исчисление
Примеры вариационных задач
Дифференциальное уравнение Эйлера
Функционалы, зависящие от нескольких функций
Задача о минимуме кратного интеграла
Финансовый анализ
Анализ эффективности
Критерии и показатели эффективности предприятия
Методы анализа эффективности деятельности
Факторный анализ прибыли от операционной деятельности
Анализ безубыточности предприятия
Операционный рычаг и эффект финансового рычага
Анализ и оценка состава, структуры и динамики доходов и расходов
Анализ рентабельности и резервов устойчивого роста капитала
Анализ распределения прибыли предприятия
Анализ и оценка чувствительности показателей эффективности
Анализ устойчивости
Финансовая устойчивость и долгосрочная платежеспособность
Характеристика типов финансовой устойчивости
Рыночная активность
Финансовый анализ рыночной активности
Методика анализа рыночной активности
Анализ и оценка дивидендного дохода на одну акцию
Инвестиционная деятельность
Инвестиции: экономическая сущность и классификация
Государственное регулирование инвестиционной деятельности
Источники финансовых ресурсов на капитальные вложения
Инвестиции в основные фонды
Оценка состояния основных фондов
Амортизация основных фондов
Капитальное строительство в инвестиционном процессе
Планирование инвестиций в форме капитальных вложений
Экономическая эффективность инвестиций
Финансирование капитальных вложений
Кредитование капитальных вложений
Кредитоспособность
Финансирование и кредитование затрат
Финансирование и кредитование инвестиционной деятельности потребительской кооперации
Финансирование и кредитование капитальных вложений потребительской кооперации
Инвестиционное строительное проектирование
Анализ инвестиций
Инвестиции и инвестиционная деятельность предприятия
Задачи финансового анализа инвестиций предприятия
Учет фактора времени в инвестиционной деятельности
Аннуитет и финансовая рента в инвестициях
Учет фактора инфляции при инвестировании
Оценка фактора риска инвестиционного проекта
Методы оценки эффективности инвестиций
Показатели эффективности инвестиционного проекта
Стоимость компании
Концепция построения международных стандартов финансовой отчетности (МСФО)
Экономическое содержание международных стандартов финансовой отчётности
Цели и принципы оценки стоимости акций и активов компании
Оценка акций и активов предприятия по справедливой стоимости
Методы оценки справедливой стоимости акций предприятия
Затратный подход к оценки стоимости компаний и акций
Сравнительный подход к оценки стоимости предприятий и акций
Доходный подход к оценке стоимости компании и акций
Выбор ставки дисконтирования при инвестировании в акции
Метод капитализации прибыли
Сравнение подходов к оценке стоимости компаний и пакетов акций
Форвардные контракты
Форвардный контракт и цена
Форвардная цена акции на бирже
Цена форвардного контракта инвестора
Форвардная цена акции с учетом величины дивиденда
Форвардная цена акции с учетом ставки дивиденда
Форвардная цена валюты на рынке форекс
Форвардный валютный курс и инфляция на рынке
Форвардная цена товара и спотовый рынок
Форвардная цена при различии ставок по кредитам и депозитам
Синтетический форвардный контракт на акции и валюту
Теория вероятностей
Основные понятия теории вероятностей
Зависимые и независимые случайные события
Повторные независимые испытания
Формула Бернулли
Одномерные случайные величины
Многомерные случайные величины
Функции случайных величин
Законы распределения целочисленных случайных величин
Законы распределения непрерывных случайных величин
Предельные теоремы теории вероятностей
Закон больших чисел и предельные теоремы
Вероятностные закономерности
Математическая статистика
Элементы математической статистики
Выборочный метод
Оценки параметров генеральной совокупности
Статистические гипотезы
Критерии согласия
Теоретические и эмпирические частоты
Теория очередей (СМО)
Определение системы массового обслуживания
Уравнения Колмогорова
Предельные вероятности состояний
Определение СМО с отказами
Определение СМО с ожиданием (очередью)
Аналитическая геометрия
Векторная алгебра
Метрические понятия и аксиомы геометрии
Равенство и подобие геометрических фигур
Бинарные отношения
Вектор, его направление и длина
Линейные операции над векторами
Линейная зависимость и независимость векторов
Отношение коллинеарных векторов
Проекции векторов на прямую и на плоскость
Угол между векторами
Ортогональные проекции векторов
Координата вектора на прямой и базис
Координаты вектора на плоскости и базис
Координаты вектора в пространстве и базис
Операции над векторами в координатной форме
Ортогональный и ортонормированный базисы
Cкалярное произведение векторов и его свойства
Выражение скалярного произведения через координаты векторов
Векторное произведение векторов и его свойства
Смешанное произведение векторов и его свойства
Ориентированные площади и объемы
Двойное векторное произведение и его свойства
Применение векторов в задачах на аффинные свойства фигур
Применение произведений векторов при решении геометрических задач
Применение векторной алгебры в механике
Системы координат
Прямоугольные координаты
Преобразования прямоугольных координат
Полярная система координат
Цилиндрическая система координат
Сферические координаты
Аффинные координаты
Аффинные преобразования координат
Аффинные преобразования плоскости
Примеры аффинных преобразований плоскости
Аффинные преобразования пространства
Многомерное координатное пространство
Линейные и аффинные подпространства
Скалярное произведение n-мерных векторов
Преобразования систем координат
Геометрия на плоскости
Алгебраические линии на плоскости
Общие уравнения геометрических мест точек
Алгебраические уравнения линий на плоскости
Уравнения прямой, проходящей через точку перпендикулярно вектору
Уравнения прямой, проходящей через точку коллинеарно вектору
Уравнения прямой, проходящей через две точки
Уравнения прямой с угловым коэффициентом
Взаимное расположение прямых
Примеры задач с прямыми на плоскости
Системы неравенств с двумя неизвестными
Системы линейных уравнений с двумя неизвестными
Линии 2-го порядка
Канонические уравнения линий второго порядка
Порядок приведения уравнения линии к каноническому виду
Эллипс
Гипербола
Парабола
Квадратичные неравенства с двумя неизвестными
Применение линий 1-го и 2-го порядков в задачах на экстремум функций
Инварианты линий
Классификация линий 2-го порядка по инвариантам
Приведение уравнения линии к каноническому виду по инвариантам
Геометрия в пространстве
Способы задания ГМТ в пространстве
Алгебраические уравнения поверхностей
Уравнения плоскости, проходящей через точку перпендикулярно вектору
Уравнения плоскости, компланарной двум неколлинеарным векторам
Уравнения плоскости, проходящей через три точки
Взаимное расположение плоскостей
Типовые задачи с плоскостями
Уравнения прямых в пространстве
Взаимное расположение прямых в пространстве
Типовые задачи с прямыми в пространстве
Поверхности 2-го порядка
Канонические уравнения поверхностей
Порядок приведения уравнения поверхности к каноническому виду
Поверхности второго порядка
Эллипсоиды
Гиперболоиды
Конусы
Параболоиды
Применение поверхностей 1-го и 2-го порядков в задачах на экстремум функций
Инварианты поверхностей
Линейная алгебра
Матрицы и операции
Линейные операции над матрицами
Умножение матриц
Возведение матриц в степень
Многочлены от матриц
Транспонирование и сопряжение матриц
Блочные матрицы
Произведение и сумма матриц Кронекера
Метод Гаусса приведения матрицы к ступенчатому виду
Элементарные преобразования матриц
Определители
Определители матриц и их основные свойства
Формула полного разложения определителя
Формула Лапласа полного разложения определителя
Определитель произведения матриц
Методы вычисления определителей
Ранг матрицы
Линейная зависимость и линейная независимость строк (столбцов) матрицы
Ранг матрицы и базисный минор матрицы
Методы вычисления ранга матрицы
Ранг системы столбцов (строк)
Обратная матрица
Обратные матрицы и их свойства
Ортогональные и унитарные матрицы
Способы нахождения обратной матрицы
Матричные уравнения
Односторонние обратные матрицы
Скелетное разложение матрицы
Полуобратная матрица
Псевдообратная матрица
Системы уравнений
Системы линейных алгебраических уравнений
Метод Гаусса решения систем линейных уравнений
Структура общего решения системы уравнений
Решение систем с помощью полуобратных матриц
Псевдорешения системы линейных уравнений
Функциональные матрицы
Функциональные матрицы скалярного аргумента
Производные матриц по векторному аргументу
Линейные и квадратичные формы и их преобразования
Приведение форм к каноническому виду
Закон инерции вещественных квадратичных форм
Знакоопределенность форм вещественных квадратичных
Формы и исследование функций на экстремум
Многочленные матрицы
Многочленные матрицы (лямбда-матрицы)
Операции над лямбда-матрицами
Простые преобразования многочленных матриц
Инвариантные множители многочленной матрицы
Функции от матриц
Собственные векторы и значения матрицы
Подобие числовых матриц
Характеристический многочлен матрицы
Минимальный многочлен матрицы
Теорема Гамильтона-Кэли
Жорданова форма матрицы
Приведение матрицы к жордановой форме
Многочлены от матриц
Применение многочленов от матриц
Функции от матриц
Линейные пространства
Линейные пространства: определение и примеры
Линейная зависимость и независимость n-мерных векторов
Размерность и базис линейного пространства
Преобразования координат в линейном пространстве
Изоморфизм линейных пространств
Подпространства
Подпространства линейного пространства
Пересечение и сумма подпространств
Способы описания подпространств
Нахождение дополнения и суммы подпространств
Нахождение пересечения подпространств
Линейные отображения
Линейные многообразия
Линейные отображения
Матрица линейного отображения
Ядро и образ линейного отображения
Линейные операторы
Линейные операторы (преобразования)
Инвариантные подпространства
Собственные векторы и значения оператора
Свойства собственных векторов операторов
Канонический вид линейного оператора
Методика приведения линейного преобразования к каноническому виду
Евклидовы пространства
Евклидовы пространства
Ортогональные векторы евклидова пространства
Ортогональный базис евклидова пространства
Ортонормированный базис евклидова пространства
Ортогональные дополнения в евклидовом пространстве
Задача о перпендикуляре
Матрица и определитель Грама и его свойства
Линейные преобразования евклидовых пространств
Канонический вид ортогонального оператора евклидова пространства
Сопряженные операторы евклидова пространства
Самосопряженные операторы евклидова пространства
Приведение квадратичной формы к главным осям
Унитарные пространства и их линейные преобразования
Комплексный анализ
Комплексные числа
Комплексные числа в алгебраической форме
Комплексные числа в тригонометрической и показательной формах
Множества на комплексной плоскости
Последовательности и ряды комплексных чисел
Комплексные функции
Функции комплексного переменного. Предел, непрерывность и производная
Элементарные функции комплексного переменного
Дифференцирование функций комплексного переменного
Аналитические функции и их свойства
Конформные отображения
Функциональные ряды в комплексной области
и их свойства Интегрирование функций комплексного переменного
Функциональные ряды и последовательности
Степенные ряды и их свойства
Разложение функций в степенные ряды
Нули аналитических функций
Ряд Лорана и разложение функций по целым степеням
Особые точки, Вычеты
Изолированные особые точки функций и полюсы
Вычеты и их применение
Вычисление интегралов с помощью вычетов
Вычеты и расположение нулей многочлена
Операционное исчисление
Дифференциальные уравнения
ДУ первого порядка
Основные понятия и определения ДУ
Метод изоклин для ДУ 1-го порядка
Метод последовательных приближений
ДУ с разделяющимися переменными
Однородные ДУ
Линейные ДУ 1-го порядка
Дифференциальное уравнение Бернулли
ДУ в полных дифференциалах
Интегрирующий множитель
ДУ, не разрешенные относительно производной
Дифференциальное уравнение Риккати
Составление ДУ семейств линий
Задачи на траектории
Особые решения ДУ
ДУ высших порядков
Понятия и определения ДУ высших порядков
ДУ, допускающие понижение порядка
Линейная независимость функций
Определители Вронского и Грама
Однородные и неоднородные дифференциальные уравнения
Задача Коши и Уравнение Эйлера
Линейные ДУ с переменными коэффициентами
Метод Лагранжа решения ДУ
Краевые задачи для ДУ высших порядков
Разложение решения ДУ в степенной ряд
Разложение решения ДУ в обобщенный степенной ряд
Нахождение периодических решений ДУ
Асимптотическое интегрирование ДУ
Системы ДУ
Системы ДУ: понятия и определения
Сведение системы ДУ к одному уравнению
Нахождение интегрируемых комбинаций
Интегрирование однородных линейных систем ДУ
Методы интегрирования неоднородных систем ДУ
Преобразование Лапласа и решение ДУ и систем
Теория устойчивости
Численные методы
Методы алгебры
Численные методы линейной алгебры
Численные методы решения СЛАУ
Итерационный метод Шульца обратной матрицы
Методы решения задач о собственных значениях и векторах матрицы
Методы решения нелинейных уравнений
Методы решения систем нелинейных уравнений
Методы теории приближений
Методы приближения сеточных функций
Методы функциональной интерполяции
Методы интегрально-дифференциальной интерполяции
Методы интегрального сглаживания
Методы интерполяции и сглаживания сплайнами
Методы численного дифференцирования и интегрирования
Методы численного дифференцирования
Методы численного интегрирования
Методы решения обыкновенных ДУ
Численные методы решения задачи Коши
Разностные схемы для решения задачи Коши
Составные схемы для решения задачи Коши
Экстраполяционные методы решения задачи Коши
Непрерывно-дискретные методы решения задачи Коши
Численные методы решения краевых задач
Методы решения ДУ в частных производных
Численные методы решения уравнений математической физики с двумя переменными
Принципы построения разностных схем для уравнений в частных производных
Разностные схемы решения уравнений в частных производных 1-го порядка
Разностные схемы решения уравнений в частных производных 2-го порядка
Численные методы решения уравнений в частных производных
Численные методы решения уравнений математической физики с тремя переменными
|
Свойства аксиоматических теорийВ данной лекции речь пойдет об изучении аксиоматической теории как таковой. Математическую теорию, изучающую данную аксиоматическую теорию как единое целое, устанавливающую свойства данной аксиоматической теории, называют метатеорией по отношению к изучаемой теории, и методы математической логики являются основными методами этой науки. Факты, устанавливаемые в ней относительно изучаемой аксиоматической теории, называют метатеоремами, чтобы отличить их от собственно теорем Рассматриваемой теории. Вопросы, связанные с моделями данной аксиоматической теории, с ее непротиворечивостью, категоричностью, полнотой, со свойством независимости ее системы аксиом, — это и есть важнейшие вопросы, на которые должна дать ответ метатеория изучаемой аксиоматической теории. Эти понятия вкратце были изложены ранее при построении формализованного исчисления высказываний, а также при построении формализованного исчисления предикатов. Теперь же рассмотрим их более обстоятельно применительно к произвольной аксиоматической теории. Непротиворечивость аксиоматических теорийЭто важнейшее свойство аксиоматических теорий и важнейшее требование, предъявляемое к ним, поскольку, как увидим ниже, противоречивые теории никакой ценности не представляют. Определение 27.1. Аксиоматическая теория называется непротиворечивой, если ни для какого утверждения Покажем, что если аксиоматическая теория противоречива, а используемая в ней логическая система включает исчисление высказываний с правилом вывода modus ponens (MP), то любое предложение Доказательство. В самом деле, ввиду противоречивости теории существует предложение Многоточия перед Ясно, что обратное утверждение также справедливо: если любое предложение аксиоматической теории является ее теоремой, то теория противоречива. Следовательно, определения противоречивой и непротиворечивой аксиоматической теорий можно сформулировать и следующим равносильным образом. Аксиоматическая теория называется противоречивой, если любое утверждение, сформулированное в терминах этой теории, является ее теоремой, и называется непротиворечивой, если существует утверждение, не являющееся ее теоремой. Значит, противоречивая теория никакой ценности не имеет, потому что в ней можно доказать что угодно. В связи со сказанным приобретает первостепенную важность проблема установления непротиворечивости аксиоматической теории. Ясно, что эта проблема имеет две стороны: отсутствие заложенного как бы внутрь системы аксиом противоречия (которое проявится при развитии теории) и истинность логических умозаключений, которые мы используем при построении доказательств. Таким образом, желая установить непротиворечивость той или иной аксиоматической теории, мы должны подвергнуть исследованию как ее математическое содержание (т.е. систему аксиом, лежащую в ее основе), так и саму логику. Ко второму моменту мы еще вернемся в дальнейшем, а сейчас посмотрим, как же решается вопрос о непротиворечивости системы аксиом, положенной в основу аксиоматической теории, об отсутствии противоречия внутри нее. Во многих случаях этот вопрос удается решить с помощью понятия модели. Развивая аксиоматическую теорию на базе той или иной системы аксиом Если модель системы аксиом Итак, предъявляемая модель системы аксиом служит обоснованием непротиворечивости соответствующей аксиоматической теории. Но, поскольку модель исходной системы аксиом Именно такова ситуация с геометрией Н.И.Лобачевского. Хорошо известны различные модели геометрии Лобачевского, построенные в геометрии Евклида. Наличие такой модели доказывает относительную непротиворечивость геометрии Лобачевского: она непротиворечива, если непротиворечива геометрия Евклида. В свою очередь, непротиворечивость геометрии Евклида также требует обоснования. Далее в курсе геометрии строится модель евклидовой геометрии в теории действительных чисел, чем устанавливается непротиворечивость первой относительно второй. Наконец, вопрос о непротиворечивости теории действительных чисел может быть сведен путем построения соответствующих моделей к вопросу о непротиворечивости теории натуральных чисел, построенной на основе системы аксиом Пеано. К непротиворечивости арифметики аналогичным образом сводится непротиворечивость обширных областей классической математики. Тем не менее "абсолютная" непротиворечивость ни геометрии Лобачевского, ни евклидовой геометрии, ни арифметики натуральных чисел не установлена. Уверенность в непротиворечивости этих теорий, в их истинности есть своего рода акт веры. В заключение отметим, что если удается построить конечную модель аксиоматической теории, то этим устанавливается "абсолютная" непротиворечивость теории. Например, двухэлементное множество является, как нетрудно убедиться, моделью теории групп. Поэтому с полной уверенностью можно утверждать, что аксиоматическая теория групп непротиворечива. Категоричность аксиоматических теорийЭто свойство в значительной мере характеризует происхождение аксиоматической теории. В большинстве категоричные теории возникали на первом пути. По второму пути происходит формирование в основном некатегоричных теорий. Проанализируем первый путь. Аксиоматика строится для одной конкретной содержательной теории, которая развита уже достаточно хорошо. Эта конкретная теория выступает в качестве модели аксиоматической теории. Никаких других моделей построенная аксиоматическая теория и не имеет, поскольку она строилась применительно к данной конкретной теории. Точнее, другие модели теории могут существовать, но они должны быть неотличимы (с точностью до терминологии и обозначений) от исходной модели. В этом случае можно сказать, что первоначальные понятия и аксиомы дают исчерпывающую совокупность главных принципов конкретной содержательной теории. Такая неотличимость двух моделей называется их изоморфизмом. (Из курса высшей алгебры известны понятия изоморфизма групп, колец, полей. Поэтому имеется представление о точном определении изоморфизма для конкретных моделей.) Аксиоматическая теория в этом случае и называется категоричной. Определение 27.2. Аксиоматическая теория называется категоричной, если любые две ее модели изоморфны. Примерами категоричных теорий служат аксиоматические теории евклидовой геометрии, различных систем чисел: натуральных, целых, рациональных, действительных, комплексных. Категоричность евклидовой геометрии доказывается в курсе геометрии. Категоричность теорий систем чисел устанавливается в курсе "Числовые системы". Некатегоричная аксиоматическая теория имеет существенно различные (т.е. неизоморфные) модели. Такие теории возникают на втором пути, в процессе обобщения общих свойств нескольких различных конкретных теорий. Примером такой теории является теория групп. Многообразие моделей этой теории обусловливает многообразие ее приложений. Некатегоричны также теория колец, теория полей и теории некоторых других алгебраических систем. Независимость системы аксиомМы уже имели дело с понятием независимости системы аксиом, когда устанавливалась независимость системы аксиом аксиоматической теории высказываний. Здесь обсудим его более подробно. Сформулируем сначала определения понятия независимости аксиомы от остальных аксиом данной системы в двух формах и докажем их равносильность. Определение 27.3. Аксиома Определение 27.4. Аксиома Определения 27.3, 27.4 равносильны. Доказательство.В самом деле, из первого определения вытекает второе, так как если утверждение Таким образом, требование независимости непротиворечивой системы аксиом состоит в том, чтобы в эту систему не включалось такое утверждение, которое может быть доказано на основе остальных аксиом системы и, следовательно, являясь излишним в этой системе, должно быть отнесено к разряду теорем. Другими словами, система аксиом должна содержать минимальное число утверждений, необходимых для логического вывода всех остальных утверждений данной теории. Это важное требование, которому должна удовлетворять система аксиом, но вовсе не обязательное, в отличие, например, от рассмотренного ранее требования непротиворечивости. Свойство независимости системы аксиом характеризует некое изящество и лаконичность этой системы. Но не всегда для той или иной аксиоматической теории целесообразно выбирать независимую систему аксиом: изящество системы аксиом может привести к громоздкости доказательств теорем данной теории. Поэтому отступление от выполнения требования независимости вполне допустимо из методических или иных практических соображений. Именно так и делается в большинстве школьных курсов геометрии, где приходится учитывать психологические и возрастные особенности учащихся. Без доказательства допускается большое количество утверждений. Их истинность считается само собой разумеющейся, а некоторые из них даже не формулируются явно. Такой подход сильно упрощает изложение геометрии и облегчает ее усвоение учащимися, ибо доказательство самых простых и очевидных утверждений геометрии требует очень тонких и кропотливых рассмотрений, цель которых будет непонятна, а усвоение недоступно для детей школьного возраста. Интересно отметить, что проблема независимости систем аксиом является, по существу, самой первой проблемой в основаниях математики. Уже ближайшим последователям Евклида было известно, что если воспользоваться понятием движения, то его IV постулат, утверждающий, что все прямые углы равны между собой, может быть доказан как логическое следствие остальных аксиом и постулатов. Также было известно, что аксиомы "Если удвоим равные, то получим равные" и "Половины равных равны между собой" являются логическими следствиями остальных. С размышления над проблемой независимости менее тривиального V постулата Евклида, собственно, и началась наука об обосновании геометрии. Проблема непротиворечивости тогда не возникала, да и не могла возникнуть вплоть до XIX в., пока Лобачевский не указал метод доказательства независимости аксиом — метод построения моделей. В чем же состоит метод доказательства независимости аксиомы В то же время известно, что непротиворечивость системы аксиом устанавливается путем построения модели этой системы аксиом в некоторой заведомо непротиворечивой теории. Таким образом, приходят к следующему методу доказательства независимости аксиом. Для доказательства независимости аксиомы Именно на этой идее, принадлежащей Лобачевскому, и основывается доказательство независимости аксиомы о параллельных Евклида (аксиома Система аксиом Полнота аксиоматических теорийОбобщенно можно сказать, что аксиоматическая теория называется полной, если она содержит достаточное для какой-нибудь цели количество теорем. В зависимости от целей выделяют различные виды полноты. Так, в теореме 16.6 была установлена полнота аксиоматической теории высказываний относительно алгебры высказываний: теория охватывала все тавтологии этой алгебры. Доказательство соответствующей теоремы для аксиоматической теории предикатов будет дано в следующей лекции. Это понятие полноты — относительное, или внешнее, понятие полноты (полнота относительно внешнего фактора). Выделяют понятие внутренней полноты. Здесь различают две его модификации: абсолютная полнота и полнота в узком смысле. Определение 27.5. Аксиоматическая теория называется абсолютно полной, если для любого утверждения Определение 27.6. Аксиоматическая теория называется полной в узком смысле (или в смысле Поста), если добавление к ее аксиомам любого недоказуемого в ней утверждения с сохранением всех правил вывода приводит к противоречивой теории. Всякая абсолютно полная теория будет полна и в узком смысле. Доказательство. В самом деле, допустим, что некоторая абсолютно полная теория не полна в узком смысле. Значит, найдется такое утверждение Смысл требования (абсолютной) полноты непротиворечивой системы аксиом заключается в том, чтобы она давала возможность без всяких добавочных предпосылок, без какого бы то ни было обращения к наглядным представлениям и опыту исключительно логическим путем доказать всякое предложение, сформулированное в терминах данной теории, либо его опровергнуть. Классическим примером неполной системы аксиом является система аксиом и постулатов "Начал" Евклида. Уже при доказательстве первых теорем Евклид вынужден молчаливо прибегать к наглядности и очевидности. Так, для обоснования наличия точки пересечения у двух прямых, у двух окружностей, у прямой и окружности требуется аксиома непрерывности, что было осознано математиками лишь в XIX в. Понятие равенства фигур Евклид определяет через движение: "И совмещающиеся равны между собой". Но свойства движения, которые Евклид, несомненно, почерпнул из эмпирических представлений о механическом движении твердых тел и которыми он широко пользуется при доказательстве теорем, никак не выражены в его аксиомах. Нет среди евклидовых аксиом и аксиом порядка или расположения (поэтому тот факт, что прямая делит плоскость на две части, очевиден для Евклида), как и аксиом, связанных с измерением длин, площадей и объемов. (Последнюю задачу блестяще решил великий геометр, механик и инженер древности Архимед, живший непосредственно после Евклида (287–212 гг. до н.э.), который в своем сочинении "О сфере и цилиндре" развил теорию измерения площадей и объемов, получив, в частности, формулы площади поверхности и объема шара, ввел аксиому, носящую и поныне его имя). Другим примером неполной системы аксиом может служить система аксиом абсолютной геометрии (аксиомы I–IV групп системы аксиом Гильберта). В этой системе не может быть ни доказано, ни опровергнуто ни одно предложение, опирающееся на аксиому параллельности Евклида (V.1) или аксиому параллельности Лобачевского Вернемся к анализу понятия полноты. Сопоставим его с понятием непротиворечивости. Если непротиворечивость гарантирует, что из данной системы аксиом Обсуждая выше проблему независимости системы аксиом, мы доказали, что утверждение Снова вернемся к анализу понятия полноты системы аксиом и попытаемся связать его с понятием модели данной системы аксиом. Снова, как и в случае с требованием непротиворечивости, мы пытаемся уйти от выражения этого понятия на языке выводимости к выражению его на языке моделей, т.е. пытаемся уйти от синтаксиса к семантике, от формализма к содержанию. Но здесь эта попытка не окажется столь успешной, как в случае с непротиворечивостью. (Хотя и там ее успех был относителен.) Все это свидетельствует о том, что к этим проблемам предстоит вернуться и именно на языке синтаксиса, на языке формализма, что и будет выполнено в следующей лекции, и результаты окажутся поразительными. Нетрудно уяснить тот факт, что чем меньшее количество аксиом содержит система аксиом Руководствуясь этим соображением, в ряде учебников по основаниям геометрии понятие полноты аксиоматической теории отождествлено с ее категоричностью. Тем не менее это не так: не всякая категоричная аксиоматическая теория полна. Таковой является, например, аксиоматическая теория натуральных чисел, построенная на базе системы аксиом Пеано. Тем не менее всестороннее решение проблем, связанных с полнотой аксиоматических теорий, удается получить только в рамках формальных аксиоматических теорий, когда будут уточнены понятия выводимости, доказуемости, правил вывода, когда сама аксиоматическая теория станет точно определяемым математическим понятием (до сих пор она рассматривалась лишь в описательном плане), подвергаемым изучению методами математической логики. Здесь ограничимся замечанием, что для многих важных математических теорий задача сочетания обоих рассмотренных качеств — непротиворечивости и полноты — оказывается невыполнимой.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |