Применение преобразования Лапласа к решению линейных дифференциальных уравнений и систем
1°. Общие сведения о преобразовании Лапласа: оригинал и изображение
Функцией-оригиналом называется комплекснозначная функция действительного переменного , удовлетворяющая следующим условиям:
1) , если ; 2) функция интегрируема на любом конечном интервале оси ; 3) с возрастанием модуль функции растет не быстрее некоторой показательной функции, т. е. существуют числа и такие, что для всех имеем
 (1)
Изображением функции-оригинала по Лапласу называется функция комплексного переменного , определяемая равенством
 (2)
при . Условие 3 обеспечивает существование интеграла (2).
Преобразование (2), ставящее в соответствие оригиналу его изображение , называется преобразованием Лапласа. При этом пишут .
Свойства преобразования Лапласа
Всюду в дальнейшем считаем, что
 (3)
I. Свойство линейности. Для любых комплексных постоянных и 
 (4)
II. Теорема подобия. Для любого постоянного 
 (5)
III. Дифференцирование оригинала. Если есть оригинал, то
 (6)
Обобщение: если раз непрерывно дифференцируема на и если есть оригинал, то
 (7)
IV. Дифференцирование изображения равносильно умножению оригинала на "минус аргумент", т.е.
 (8) Обобщение:  (9)
V. Интегрирование оригинала сводится к делению изображения на 
 (10)
VI. Интегрирование изображения равносильно делению на оригинала:
 (11) (предполагаем, что интеграл сходится). VII. Теорема запаздывания. Для любого положительного числа 
 (12)
VIII. Теорема смещения (умножение оригинала на показательную функцию). Для любого комплексного числа 
 (13)
IX. Теорема умножения (Э. Борель). Произведение двух изображений и также является изображением, причем
 (14)
Интеграл в правой части (14) называется сверткой функций и и обозначается символом
Теорема XI утверждает, что умножение изображений равносильно свертыванию оригиналов, т.е.
 (15)
Отыскание оригиналов дробно-рациональных изображений
Для нахождения оригинала по известному изображению , где есть правильная рациональная дробь, применяют следующие приемы.
1) Эту дробь разлагают на сумму простейших дробей и находят для каждой из них оригинал, пользуясь свойствами I–IX преобразования Лапласа.
2) Находят полюсы этой дроби и их кратности . Тогда оригиналом для будет функция
![f(t)\Doteq \sum_{k=1}^{m}\frac{1}{(n_k-1)!} \lim_{p\to p_k}\frac{d^{n_{k-1}}}{dp^{n_{k-1}}}\Bigl[F(p)(p-p_k)^{n_k}e^{pt}\Bigr],]() (16)
где сумма берется по всем полюсам функции .
В случае, если все полюсы функции простые, т.е. , последняя формула упрощается и принимает вид
 (17)
Пример 1. Найти оригинал функции , если
Решение. Первый способ. Представим в виде суммы простейших дробей
и найдем неопределенные коэффициенты . Имеем
Полагая в последнем равенстве последовательно , получаем
откуда ; значит,
Находя оригиналы для каждой из простейших дробей и пользуясь свойствам линейности, получаем
Второй способ. Найдем полюсы функции . Они совпадают с нулями знаменателя . Таким образом, изображение имеет четыре простых полюса . Пользуясь формулой (17), получаем оригинал
Пример 2. Найти оригинал , если .
Решение. Данная дробь имеет полюс кратности и полюс кратности . Пользуясь формулой (16), получаем оригинал
2°. Решение задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами
Пусть требуется найти решение дифференциального уравнения второго порядка с постоянными коэффициентами
 (18) удовлетворяющее начальным условиям
 (19)
Будем считать, что функция и решение вместе с его производньь ми до второго порядка включительно являются функциями-оригиналами. Пусть . По правилу дифференцирования оригиналов с учетом (2) имеем
Применяя к обеим частям (1) преобразование Лапласа и пользуясь свойством линейности преобразования, получаем операторное уравнение
 (20)
Решая уравнение (20), найдем операторное решение
Находя оригинал для , получаем решение уравнения (18), удовлетворяющее начальным условиям (19).
Аналогично можно решить любое уравнение n-го порядка с постоянными коэффициентами и с начальными условиями при .
Пример 3. Решить дифференциальное уравнение операторным методом
 (21)
 (22)
Решение. Пусть , тогда по правилу дифференцирования оригинала имеем
Известно, что поэтому, переходя отданной задачи (21)–(22) к операторному уравнению, будем иметь
Легко видеть, что функция удовлетворяет данному уравнению и начальному условию задачи.
Пример 4. Решить уравнение .
Решение. Так как и по условию , то операторное уравнение будет иметь вид
Отсюда находим операторное решение
Разлагаем правую часть на элементарные дроби:
Переходя к оригиналам, получаем искомое решение .
Пример 5. Решить уравнение .
Решение. Так как и по условию , то операторное уравнение будет иметь вид
и, следовательно, операторное решение
Разложим правую часть на элементарные дроби:
Переходя к оригиналам, получим решение поставленной задачи
3°. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами
Пусть требуется найти решение системы двух уравнений с постоянными коэффициентами
![\begin{cases}\dfrac{dx}{dt}=a_1x+b_1y+f_1(t),\\[9pt] \dfrac{dy}{dt}=a_2x+b_2y+f_2(t).\end{cases}]() (23)
удовлетворяющее начальным условиям
 (24)
Будем предполагать, что функции , а также и являются функциями-оригиналами.
Пусть
По правилу дифференцирования оригиналов с учетом (24) имеем
Применяя к обеим частям каждого из уравнений системы (23) преобразование Лапласа, получим операторную систему
Эта система является линейной алгебраической системой двух уравнений с двумя неизвестными и . Решая ее, мы найдем и , а затем, переходя к оригиналам, получим решение системы (23), удовлетворяющее начальным условиям (24). Аналогично решаются линейные системы вида
Пример 6. Найти решение системы дифференциальных уравнений операторным методом
удовлетворяющее начальному условию .
Решение. Так как и , то операторная система будет иметь вид
Решая систему, получаем
Разлагаем дроби, стоящие в правых частях, на элементарные:
Переходя к оригиналам, получим искомое решение
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|