Подпространства линейного пространства
Определение линейного подпространства
Непустое подмножество линейного пространства называется линейным подпространством пространства , если
1) (подпространство замкнуто по отношению к операции сложения);
2) и любого числа (подпространство замкнуто по отношению к операции умножения вектора на число).
Для указания линейного подпространства будем использовать обозначение , а слово "линейное" опускать для краткости.
Замечания 8.7
1. Условия 1, 2 в определении можно заменить одним условием: и любых чисел и . Разумеется, что здесь и в определении речь идет о произвольных числах из того числового поля, над которым определено пространство .
2. В любом линейном пространстве имеются два линейных подпространства:
а) само пространство , т.е. ; б) нулевое подпространство , состоящее из одного нулевого вектора пространства , т.е. . Эти подпространства называются несобственными, а все остальные — собственными.
3. Любое подпространство линейного пространства является его подмножеством: , но не всякое подмножество является линейным подпространством, так как оно может оказаться незамкнутым по отношению к линейным операциям.
4. Подпространство линейного пространства само является линейным пространством с теми же операциями сложения векторов и умножения вектора на число, что и в пространстве , поскольку для них выполняются аксиомы 1-8. Поэтому можно говорить о размерности подпространства, его базисе и т.п.
5. Размерность любого подпространства линейного пространства не превосходит размерности пространства . Если же размерность подпространства равна размерности конечномерного пространства , то подпространство совпадает с самим пространством: .
Это следует из теоремы 8.2 (о дополнении системы векторов до базиса). Действительно, взяв базис подпространства , будем дополнять его до базиса пространства . Если это возможно, то . Если нельзя дополнить, т.е. базис подпространства является базисом пространства , то . Учитывая, что пространство есть линейная оболочка базиса (см. следствие 1 теоремы 8.1), получаем .
6. Для любого подмножества линейного пространства линейная оболочка является подпространством и .
В самом деле, если (пустое множество), то по определению , т.е. является нулевым подпространством и . Пусть . Нужно доказать, что множество замкнуто по отношению к операциям сложения его элементов и умножения его элементов на число. Напомним, что элементами линейной оболочки служат линейные комбинации векторов из . Так как линейная комбинация линейных комбинаций векторов является их линейной комбинацией, то, учитывая пункт 1, делаем вывод, что является подпространством , т.е. . Включение — очевидное, так как любой вектор можно представить как линейную комбинацию , т.е. как элемент множества .
7. Линейная оболочка подпространства совпадает с подпространством , т.е. .
Действительно, так как линейное подпространство содержит все возможные линейные комбинации своих векторов, то . Противоположное включение следует из пункта 6. Значит, .
Примеры линейных подпространств
Укажем некоторые подпространства линейных пространств, примеры которых рассматривались ранее. Перечислить все подпространства линейного пространства невозможно, за исключением тривиальных случаев.
1. Пространство , состоящее из одного нулевого вектора пространства , является подпространством, т.е. .
2. Пусть, как и ранее, — множества векторов (направленных отрезков) на прямой, на плоскости, в пространстве соответственно. Если прямая принадлежит плоскости, то . Напротив, множество единичных векторов не является линейным подпространством, так как при умножении вектора на число, не равное единице, получаем вектор, не принадлежащий множеству.
3. В n-мерном арифметическом пространстве рассмотрим множество "полунулевых" столбцов вида с последними элементами, равными нулю. Сумма "полунулевых" столбцов является столбцом того же вида, т.е. операция сложения замкнута в . Умножение "полунулевого" столбца на число дает "полунулевой" столбец, т.е. операция умножения на число замкнута в . Поэтому , причем . Напротив, подмножество ненулевых столбцов не является линейным подпространством, так как при умножении на нуль получается нулевой столбец, который не принадлежит рассматриваемому множеству. Примеры других подпространств приводятся в следующем пункте.
4. Пространство решений однородной системы уравнений с неизвестными является подпространством n-мерного арифметического пространства . Размерность этого подпространства определяется матрицей системы: .
Множество решений неоднородной системы (при ) не является подпространством , так как сумма двух решений неоднородной ; системы не будет решением той же системы.
5. В пространстве квадратных матриц порядка л рассмотрим два подмножества: множество симметрических матриц и множество кососимметрических матриц. Сумма симметрических матриц является симметрической матрицей, т.е. операция сложения замкнута в . Умножение симметрической матрицы на число также не нарушает симметричность, т.е. операция умножения матрицы на число замкнута в . Следовательно, множество симметрических матриц является под пространством пространства квадратных матриц, т.е. . Нетрудно найти размерность этого подпространства. Стандартный базис образуют : л матриц с единственным ненулевым (равным единице) элементом на глав ной диагонали: , а также матрицы с двумя ненулевыми (равными единице) элементами, симметричными относительно главной диагонали: . Всего в базисе будет матриц. Следовательно, . Аналогично получаем, что и .
Множество вырожденных квадратных матриц n-го порядка не является подпространством , так как сумма двух вырожденных матриц может оказаться невырожденной матрицей, например, в пространстве 
6. В пространстве многочленов с действительными коэффициентами можно указать естественную цепочку подпространств
Множество четных многочленов является линейным подпространством , так как сумма четных многочленов и произведение четно го многочлена на число будут четными многочленами. Множество нечетных многочленов также является линейным пространством. Множество многочленов, имеющих действительные корни, не является линейным подпространством, так как при сложении таких двух многочленов может получиться многочлен, который не имеет действительных корней, например, .
7. В пространстве можно указать естественную цепочку подпространств:
Многочлены из можно рассматривать как функции, определенные на . Так как многочлен является непрерывной функцией вместе со своими производными любого порядка, можно записать: и . Пространство тригонометрических двучленов является подпространством , так как производные любого порядка функции непрерывны, т.е. . Множество непрерывных периодических функций не является подпространством , так как сумма двух периодических функций может оказаться непериодической функцией, например, .
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|