Основные понятия и определения дифференциальных уравнений
Дифференциальным уравнением называется уравнение, связывающее независимую переменную , искомую функцию и её производные , т. е. уравнение вида
Если искомая функция есть функция одной независимой переменной , дифференциальное уравнение называется обыкновенным; например,
Когда искомая функция есть функция двух и более независимых переменных, например, если , то уравнение вида
называется уравнением в частных производных. Здесь — неотрицательные целые числа, такие, что ; например
Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение — уравнение первого порядка, дифференциальное уравнение , где — известная функция, — уравнение второго порядка; дифференциальное уравнение — уравнение 9-го порядка.
Решением дифференциального уравнения n-го порядка на интервале называется функция , определенная на интервале вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции в дифференциальное уравнение превращает последнее в тождество по на . Например, функция является решением уравнения на интервале . В самом деле, дифференцируя функцию дважды, будем иметь
Подставляя выражения и в дифференциальное уравнение, получим тождество
График решения дифференциального уравнения называется интегральной кривой этого уравнения.
Общий вид уравнения первого порядка
 (1)
 Если уравнение (1) удается разрешить относительно , то получится уравнение первого порядка, разрешенное относительно производной.
 (2)
Задачей Коши называют задачу нахождения решения уравнения , удовлетворяющего начальному условию (другая запись ).
Геометрически это означает, что ищется интегральная кривая, проходящая через заданную точку плоскости (рис. 1).
Теорема существования и единственности решения задачи Коши
Пусть дано дифференциальное уравнение , где функция определена в некоторой области плоскости , содержащей точку . Если функция удовлетворяет условиям
а) есть непрерывная функция двух переменных и в области ;
б) имеет частную производную , ограниченную в области , то найдется интервал , на котором существует единственное решение данного уравнения, удовлетворяющее условию .
Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения , но эти условия не являются необходимыми. Именно, может существовать единственное решение уравнения , удовлетворяющее условию , хотя в точке не выполняются условия а) или б) или оба вместе.
Рассмотрим примеры.
1. . Здесь . В точках оси условия а) и б) не выполняются (функция и её частная производная разрывны на оси и неограниченны при ), но через каждую точку оси проходит единственная интегральная кривая (рис. 2).
2. . Правая часть уравнения и ее частная производная непрерывны по и во всех точках плоскости . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение является вся плоскость .
3. . Правая часть уравнения определена и непрерывна во всех точках плоскости . Частная производная обращается в бесконечность при , т.е. на оси , так что при нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение . Таким образом, через каждую точку оси проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).
Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол и отрезков оси , например, и др., так что через каждую точку оси проходит бесконечное множество интегральных линий.
Условие Липшица
Замечание. Условие ограниченности производной , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица.
Говорят, что функция , определенная в некоторой области , удовлетворяет в условию Липшица по , если существует такая постоянная (постоянная Липшица), что для любых из и любого из справедливо неравенство
Существование в области ограниченной производной достаточно для того, чтобы функция удовлетворяла в условию Липшица. Напротив, из условия Липшица не вытекает условие ограниченности ; последняя может даже не существовать. Например, для уравнения функция не дифференцируема по в точке , но условие Липшица в окрестности этой точки выполняется. В самом деле,
поскольку а . Таким образом, условие Липшица выполняется с постоянной .
Теорема. Если функция непрерывна и удовлетворяет условию Липшица по в области , то задача Коши
имеет единственное решение.
Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение
Нетрудно видеть, что функция непрерывна; с другой стороны,
Если то
и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат , так как множитель при оказывается неограниченным при .
Данное дифференциальное уравнение допускает решение где — произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию 
Общим решением дифференциального уравнения (2) называется функция
 (3)
зависящая от одной произвольной постоянной , и такая, что
1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной ; 2) каково бы ни было начальное условие
 (4)
можно подобрать такое значение постоянной , что решение будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка принадлежит области, где выполняются условия существования и единственности решения.
Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной .
 Пример 1. Проверить, что функция есть общее решение дифференциального уравнения и найти частное решение, удовлетворяющее начальному условию . Дать геометрическое истолкование результата.
Решение. Функция удовлетворяет данному уравнению при любых значениях произвольной постоянной . В самом деле, 
Зададим произвольное начальное условие . Полагая и в равенстве , найдем, что . Подставив это значение в данную функцию, будем иметь . Эта функция удовлетворяет заданному начальному условию: положив , получим . Итак, функция является общим решением данного уравнения.
В частности, полагая и , получим частное решение .
Общее решение данного уравнения, т.е. функция , определяет в плоскости семейство параллельных прямых с угловым коэффициентом . Через каждую точку плоскости проходит единственная интегральная линия . Частное решение определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).
Пример 2. Проверить, что функция есть общее решение уравнения и найти частное решение, удовлетворяющее начальному условию .
 Решение. Имеем . Подставляя в данное уравнение выражения и , получаем , т. е. функция удовлетворяет данному уравнению при любых значениях постоянной .
Зададим произвольное начальное условие . Подставив и вместо и в функцию , будем иметь , откуда . Функция удовлетворяет начальному условию. Действительно, полагая , получим . Функция есть общее решение данного уравнения.
При и получим частное решение .
С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку (рис.5).
Соотношение вида , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.
Соотношение, получаемое из общего интеграла при конкретном значении постоянной , называется частным интегралом дифференциального уравнения.
Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.
Так как с геометрической точки зрения координаты и равноправны, то наряду с уравнением мы будем рассматривать уравнение .
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|