Объём тела вращения
Пусть — тело вращения, образованное вращением вокруг оси абсцисс криволинейной трапеции, расположенной в верхней полуплоскости и ограниченной осью абсцисс, прямыми и и графиком непрерывной функции .
Докажем, что это тело вращения кубируемо и его объем выражается формулой
Сначала докажем, что это тело вращения регулярно, если в качестве выберем плоскость , перпендикулярную оси вращения. Отметим, что сечение, находящееся на расстоянии от плоскости , является кругом радиуса и его площадь равна (рис. 46). Поэтому функция непрерывна в силу непрерывности . Далее, если , то это значит, что . Но проекциями сечений на плоскость являются круги радиусов и с центром , и из вытекает, что круг радиуса содержится в круге радиуса .
 Итак, тело вращения регулярно. Следовательно, оно кубируемо и его объем вычисляется по формуле
Если бы криволинейная трапеция была ограничена и снизу и сверху кривыми , то
Формулой (3) можно воспользоваться и для вычисления объема тела вращения в случае, когда граница вращающейся фигуры задана параметрическими уравнениями. В этом случае приходится пользоваться заменой переменной под знаком определенного интеграла.
В некоторых случаях оказывается удобным разлагать тела вращения не на прямые круговые цилиндры, а на фигуры иного вида.
Например, найдем объем тела, получаемого при вращении криволинейной трапеции вокруг оси ординат. Сначала найдем объем, получаемый при вращении прямоугольника с высотой y#, в основании которого лежит отрезок . Этот объем равен разности объемов двух прямых круговых цилиндров
Но теперь ясно, что искомый объем оценивается сверху и снизу следующим образом:
Отсюда легко следует формула объёма тела вращения вокруг оси ординат:
 (4)
Пример 4. Найдем объем шара радиуса .
Решение. Не теряя общности, будем рассматривать круг радиуса с центром в начале координат. Этот круг, вращаясь вокруг оси , образует шар. Уравнение окружности имеет вид , поэтому . Учитывая симметрию круга относительно оси ординат, найдем сначала половину искомого объема
Следовательно, объем всего шара равен .
 Пример 5. Вычислить объем конуса, высота которого и радиус основания .
Решение. Выберем систему координат так, чтобы ось совпала с высотой h (рис. 47), а вершину конуса примем за начало координат. Тогда уравнение прямой запишется в виде .
Пользуясь формулой (3), получим:
Пример 6. Найдем объем тела, полученного при вращении вокруг оси абсцисс астроиды (рис. 48).
 Решение. Построим астроиду. Рассмотрим половину верхней части астроиды, расположенной симметрично относительно оси ординат. Используя формулу (3) и меняя переменную под знаком определенного интеграла, найдем для новой переменной пределы интегрирования.
Если , то , а если , то . Учитывая, что и , получаем:
Объем всего тела, образованного вращением астроиды, будет .
Пример 7. Найдем объем тела, получаемого при вращении вокруг оси ординат криволинейной трапеции, ограниченной осью абсцисс и первой аркой циклоиды .
Решение. Воспользуемся формулой (4): , и заменим переменную под знаком интеграла, учитывая, что первая арка циклоиды образуется при изменении переменной от до . Таким образом,
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|