Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Неразрешимые алгоритмические проблемы | |
---|---|
Онлайн-сервисы
Нахождение НОД и НОК
Разложение числа на простые множители
Сравнения по модулю
Операции над множествами
Операции над векторами
Разложение вектора по базису. Доказательство, что векторы образуют базис
Чертёж треугольника по координатам вершин
Решение треугольника
Решение Пирамиды
Построение Пирамиды по координатам вершин
Чертёж многоугольника по координатам вершин
Решение систем методом Крамера и Матричным
Онлайн построение графика кривой 2-го порядка
Определение вида кривой или поверхности 2-го порядка по инвариантам
МНК и регрессионный анализ Онлайн + графики
Онлайн число, сумма и дата прописью
Алгоритмы JavaScript
Алгоритмы поиска
Алгоритмы сортировки
Уникальные элементы массива
Объединение, пересечение и разность массивов
НОД и НОК
Операции над матрицами
Дата прописью
Введение в анализ
Функции: понятие, определение, графики
Непрерывность функции
Исследование функции и построение графика
Теория множеств
Множества: понятие, определение, примеры
Точечные множества
Замкнутые и открытые множества
Мера множества
Группы, кольца, поля в математике
Поле комплексных чисел
Кольцо многочленов
Основная теорема алгебры и ее следствия
Математическая логика
Алгебра высказываний
Аксиоматика и логические рассуждения
Методы доказательств теорем
Алгебра высказываний и операции над ними
Формулы алгебры высказываний
Тавтологии алгебры высказываний
Логическая равносильность формул
Нормальные формы для формул высказываний
Логическое следование формул
Приложение алгебры высказываний для теорем
Дедуктивные и индуктивные умозаключения
Решение логических задач
Принцип полной дизъюнкции
Булевы функции
Множества, отношения и функции в логике
Булевы функции от одного и двух аргументов
Булевы функции от n аргументов
Системы булевых функций
Применение булевых функций к релейно-контактным схемам
Релейно-контактные схемы в ЭВМ
Практическое применение булевых функций
Теория формального
Формализованное исчисление высказываний
Полнота и другие свойства формализованного исчисления высказываний
Независимость системы аксиом формализованного исчисления высказываний
Логика предикатов
Логика предикатов
Логические операции над предикатами
Кванторные операции над предикатами
Формулы логики предикатов
Тавтологии логики предикатов
Преобразования формул и следование их предикатов
Проблемы разрешения для общезначимости и выполнимости формул
Применение логики предикатов в математике
Строение математических теорем
Аристотелева силлогистика и методы рассуждений
Принцип полной дизъюнкции в предикатной форме
Метод полной математической индукции
Необходимые и достаточные условия
Логика предикатов и алгебра множеств
Формализованное исчисление предикатов
Неформальные и формаль-ные аксиоматические теории
Неформальные аксиоматические теории
Свойства аксиоматических теорий
Формальные аксиоматические теории
Формализация теории аристотелевых силлогизмов
Свойства формализованного исчисления предикатов
Формальные теории первого порядка
Формализация математической теории
Теория алгоритмов
Интуитивное представление об алгоритмах
Машины Тьюринга и тезис
Рекурсивные функции
Нормальные алгоритмы Маркова
Разрешимость и перечислимость множеств
Неразрешимые алгоритмические проблемы
Теорема Гёделя о неполноте формальной арифметики
Математическая логика и компьютеры
Дискретная математика
Множества и отношения
Теория множеств: понятия и определения
Операции над множествами
Кортеж и декартово произведение множеств
Соответствия и бинарные отношения на множествах
Операции над соответствиями на множествах
Семейства множеств
Специальные свойства бинарных отношений
Отношения эквивалентности на множестве
Упорядоченные множества
Теорема о неподвижной точке
Мощность множества
Парадокс Рассела
Метод характеристических функций
Группы и кольца
Алгебраические структуры и операции
Группоиды, полугруппы, группы
Кольца, тела, поля
Области целостности в теории колец
Модули и линейные пространства
Подгруппы и подкольца
Теорема Лагранжа о порядке конечной группы
Гомоморфизмы групп и нормальные делители
Гомоморфизмы и изоморфизмы колец
Алгебра кватернионов
Полукольца и булевы алгебры
Полукольца: определение, аксиомы, примеры
Замкнутые полукольца
Полукольца и системы линейных уравнений
Булевы алгебры и полукольца
Решетки и полурешетки
Алгебраические системы
Алгебраические системы: модели и алгебры
Подсистемы алгебраических систем
Конгруэнции и фактор-системы
Гомоморфизмы алгебраических систем
Прямые произведения алгебраических систем
Конечные булевы алгебры
Многосортные алгебры
Теория графов
Теория графов: основные понятия и определения
Способы представления графов
Неориентированные и ориентированные деревья
Остовное дерево и алгоритм Краскала
Методы систематического обхода вершин графа
Алгоритмы поиска в глубину и ширину в графах
Задача о путях во взвешенных ориентированных графах
Изоморфизм, гомоморфизм и автоморфизм графов
Топологическая сортировка вершин графа
Элементы цикломатики в теории графов
Булева алгебра и функции
Булевы функции и булев куб
Таблицы булевых функций и булев оператор
Равенство булевых функций. Фиктивные переменные
Формулы и суперпозиции булевых функций
Дизъюнктивные и конъюнктивные нормальные формы
Построение минимальных ДНФ
Теорема Поста и классы
Критерий Поста
Схемы из функциональных элементов
Конечные автоматы и регулярные языки
Конечные автоматы и регулярные языки
Алфавит, слово, язык в программировании
Порождающие грамматики (грамматики Хомского)
Классификация грамматик и языков
Регулярные языки и регулярные выражения
Конечные автоматы
Допустимость языка конечным автоматом
Теорема Клини
Детерминизация конечных автоматов
Минимизация конечных автоматов
Лемма о разрастании для регулярных языков
Обоснование алгоритма детерминизации автоматов
Конечные автоматы с выходом
Морфизмы и конечные подстановки
Машины Тьюринга
Контекстно-свободные языки
Контекстно-свободные языки и грамматики
Приведенная форма КС-грамматики
Лемма о разрастании для КС-языков
Магазинные автоматы (автомат с магазинной памятью)
Алгоритм построения МП-автомата по КС-грамматике
Алгоритм построения КС-грамматики по МП-автомату
Алгебраические свойства КС-языков
Основное свойство суперпозиции КС-языков
Пересечение контекстно-свободных языков
Методы синтаксического анализа КС-языков
Восходящий синтаксический анализ и LR(k)-грамматики
Семантика формальных языков
Принцип индукции по неподвижной точке
Графовое представление МП-автоматов
Интегральное исчисление
Неопределённый и определённый
Неопределенный и определенный интегралы
Свойства интегралов
Интегрирование по частям
Интегрирование методом замены переменной
Интегрирование различных рациональных функций
Интегрирование различных иррациональных функций
Интегрирование различных тригонометрических функций
Определенный интеграл и его основные свойства
Необходимое и достаточное условие интегрируемости
Теоремы существования первообразной
Свойства определенных интегралов
Несобственные интегралы
Интегральное определение логарифмической функции
Приложения интегралов
Вычисление площадей плоских фигур
Площади фигур в различных координатах
Вычисление объемов тел с помощью интегралов
Объём тела вращения
Вычисление длин дуг кривых
Формулы длины дуги регулярной кривой
Кривизна плоской кривой
Площадь поверхности вращения тела
Интегралы в физике
Статические моменты и координаты центра тяжести
Теоремы Гульдина–Паппа
Вычисление моментов инерции
Другие приложения интегралов в физике
Основные интегралы
Вариационное исчисление
Примеры вариационных задач
Дифференциальное уравнение Эйлера
Функционалы, зависящие от нескольких функций
Задача о минимуме кратного интеграла
Финансовый анализ
Анализ эффективности
Критерии и показатели эффективности предприятия
Методы анализа эффективности деятельности
Факторный анализ прибыли от операционной деятельности
Анализ безубыточности предприятия
Операционный рычаг и эффект финансового рычага
Анализ и оценка состава, структуры и динамики доходов и расходов
Анализ рентабельности и резервов устойчивого роста капитала
Анализ распределения прибыли предприятия
Анализ и оценка чувствительности показателей эффективности
Анализ устойчивости
Финансовая устойчивость и долгосрочная платежеспособность
Характеристика типов финансовой устойчивости
Рыночная активность
Финансовый анализ рыночной активности
Методика анализа рыночной активности
Анализ и оценка дивидендного дохода на одну акцию
Инвестиционная деятельность
Инвестиции: экономическая сущность и классификация
Государственное регулирование инвестиционной деятельности
Источники финансовых ресурсов на капитальные вложения
Инвестиции в основные фонды
Оценка состояния основных фондов
Амортизация основных фондов
Капитальное строительство в инвестиционном процессе
Планирование инвестиций в форме капитальных вложений
Экономическая эффективность инвестиций
Финансирование капитальных вложений
Кредитование капитальных вложений
Кредитоспособность
Финансирование и кредитование затрат
Финансирование и кредитование инвестиционной деятельности потребительской кооперации
Финансирование и кредитование капитальных вложений потребительской кооперации
Инвестиционное строительное проектирование
Анализ инвестиций
Инвестиции и инвестиционная деятельность предприятия
Задачи финансового анализа инвестиций предприятия
Учет фактора времени в инвестиционной деятельности
Аннуитет и финансовая рента в инвестициях
Учет фактора инфляции при инвестировании
Оценка фактора риска инвестиционного проекта
Методы оценки эффективности инвестиций
Показатели эффективности инвестиционного проекта
Стоимость компании
Концепция построения международных стандартов финансовой отчетности (МСФО)
Экономическое содержание международных стандартов финансовой отчётности
Цели и принципы оценки стоимости акций и активов компании
Оценка акций и активов предприятия по справедливой стоимости
Методы оценки справедливой стоимости акций предприятия
Затратный подход к оценки стоимости компаний и акций
Сравнительный подход к оценки стоимости предприятий и акций
Доходный подход к оценке стоимости компании и акций
Выбор ставки дисконтирования при инвестировании в акции
Метод капитализации прибыли
Сравнение подходов к оценке стоимости компаний и пакетов акций
Форвардные контракты
Форвардный контракт и цена
Форвардная цена акции на бирже
Цена форвардного контракта инвестора
Форвардная цена акции с учетом величины дивиденда
Форвардная цена акции с учетом ставки дивиденда
Форвардная цена валюты на рынке форекс
Форвардный валютный курс и инфляция на рынке
Форвардная цена товара и спотовый рынок
Форвардная цена при различии ставок по кредитам и депозитам
Синтетический форвардный контракт на акции и валюту
Теория вероятностей
Основные понятия теории вероятностей
Зависимые и независимые случайные события
Повторные независимые испытания
Формула Бернулли
Одномерные случайные величины
Многомерные случайные величины
Функции случайных величин
Законы распределения целочисленных случайных величин
Законы распределения непрерывных случайных величин
Предельные теоремы теории вероятностей
Закон больших чисел и предельные теоремы
Вероятностные закономерности
Математическая статистика
Элементы математической статистики
Выборочный метод
Оценки параметров генеральной совокупности
Статистические гипотезы
Критерии согласия
Теоретические и эмпирические частоты
Теория очередей (СМО)
Определение системы массового обслуживания
Уравнения Колмогорова
Предельные вероятности состояний
Определение СМО с отказами
Определение СМО с ожиданием (очередью)
Аналитическая геометрия
Векторная алгебра
Метрические понятия и аксиомы геометрии
Равенство и подобие геометрических фигур
Бинарные отношения
Вектор, его направление и длина
Линейные операции над векторами
Линейная зависимость и независимость векторов
Отношение коллинеарных векторов
Проекции векторов на прямую и на плоскость
Угол между векторами
Ортогональные проекции векторов
Координата вектора на прямой и базис
Координаты вектора на плоскости и базис
Координаты вектора в пространстве и базис
Операции над векторами в координатной форме
Ортогональный и ортонормированный базисы
Cкалярное произведение векторов и его свойства
Выражение скалярного произведения через координаты векторов
Векторное произведение векторов и его свойства
Смешанное произведение векторов и его свойства
Ориентированные площади и объемы
Двойное векторное произведение и его свойства
Применение векторов в задачах на аффинные свойства фигур
Применение произведений векторов при решении геометрических задач
Применение векторной алгебры в механике
Системы координат
Прямоугольные координаты
Преобразования прямоугольных координат
Полярная система координат
Цилиндрическая система координат
Сферические координаты
Аффинные координаты
Аффинные преобразования координат
Аффинные преобразования плоскости
Примеры аффинных преобразований плоскости
Аффинные преобразования пространства
Многомерное координатное пространство
Линейные и аффинные подпространства
Скалярное произведение n-мерных векторов
Преобразования систем координат
Геометрия на плоскости
Алгебраические линии на плоскости
Общие уравнения геометрических мест точек
Алгебраические уравнения линий на плоскости
Уравнения прямой, проходящей через точку перпендикулярно вектору
Уравнения прямой, проходящей через точку коллинеарно вектору
Уравнения прямой, проходящей через две точки
Уравнения прямой с угловым коэффициентом
Взаимное расположение прямых
Примеры задач с прямыми на плоскости
Системы неравенств с двумя неизвестными
Системы линейных уравнений с двумя неизвестными
Линии 2-го порядка
Канонические уравнения линий второго порядка
Порядок приведения уравнения линии к каноническому виду
Эллипс
Гипербола
Парабола
Квадратичные неравенства с двумя неизвестными
Применение линий 1-го и 2-го порядков в задачах на экстремум функций
Инварианты линий
Классификация линий 2-го порядка по инвариантам
Приведение уравнения линии к каноническому виду по инвариантам
Геометрия в пространстве
Способы задания ГМТ в пространстве
Алгебраические уравнения поверхностей
Уравнения плоскости, проходящей через точку перпендикулярно вектору
Уравнения плоскости, компланарной двум неколлинеарным векторам
Уравнения плоскости, проходящей через три точки
Взаимное расположение плоскостей
Типовые задачи с плоскостями
Уравнения прямых в пространстве
Взаимное расположение прямых в пространстве
Типовые задачи с прямыми в пространстве
Поверхности 2-го порядка
Канонические уравнения поверхностей
Порядок приведения уравнения поверхности к каноническому виду
Поверхности второго порядка
Эллипсоиды
Гиперболоиды
Конусы
Параболоиды
Применение поверхностей 1-го и 2-го порядков в задачах на экстремум функций
Инварианты поверхностей
Линейная алгебра
Матрицы и операции
Линейные операции над матрицами
Умножение матриц
Возведение матриц в степень
Многочлены от матриц
Транспонирование и сопряжение матриц
Блочные матрицы
Произведение и сумма матриц Кронекера
Метод Гаусса приведения матрицы к ступенчатому виду
Элементарные преобразования матриц
Определители
Определители матриц и их основные свойства
Формула полного разложения определителя
Формула Лапласа полного разложения определителя
Определитель произведения матриц
Методы вычисления определителей
Ранг матрицы
Линейная зависимость и линейная независимость строк (столбцов) матрицы
Ранг матрицы и базисный минор матрицы
Методы вычисления ранга матрицы
Ранг системы столбцов (строк)
Обратная матрица
Обратные матрицы и их свойства
Ортогональные и унитарные матрицы
Способы нахождения обратной матрицы
Матричные уравнения
Односторонние обратные матрицы
Скелетное разложение матрицы
Полуобратная матрица
Псевдообратная матрица
Системы уравнений
Системы линейных алгебраических уравнений
Метод Гаусса решения систем линейных уравнений
Структура общего решения системы уравнений
Решение систем с помощью полуобратных матриц
Псевдорешения системы линейных уравнений
Функциональные матрицы
Функциональные матрицы скалярного аргумента
Производные матриц по векторному аргументу
Линейные и квадратичные формы и их преобразования
Приведение форм к каноническому виду
Закон инерции вещественных квадратичных форм
Знакоопределенность форм вещественных квадратичных
Формы и исследование функций на экстремум
Многочленные матрицы
Многочленные матрицы (лямбда-матрицы)
Операции над лямбда-матрицами
Простые преобразования многочленных матриц
Инвариантные множители многочленной матрицы
Функции от матриц
Собственные векторы и значения матрицы
Подобие числовых матриц
Характеристический многочлен матрицы
Минимальный многочлен матрицы
Теорема Гамильтона-Кэли
Жорданова форма матрицы
Приведение матрицы к жордановой форме
Многочлены от матриц
Применение многочленов от матриц
Функции от матриц
Линейные пространства
Линейные пространства: определение и примеры
Линейная зависимость и независимость n-мерных векторов
Размерность и базис линейного пространства
Преобразования координат в линейном пространстве
Изоморфизм линейных пространств
Подпространства
Подпространства линейного пространства
Пересечение и сумма подпространств
Способы описания подпространств
Нахождение дополнения и суммы подпространств
Нахождение пересечения подпространств
Линейные отображения
Линейные многообразия
Линейные отображения
Матрица линейного отображения
Ядро и образ линейного отображения
Линейные операторы
Линейные операторы (преобразования)
Инвариантные подпространства
Собственные векторы и значения оператора
Свойства собственных векторов операторов
Канонический вид линейного оператора
Методика приведения линейного преобразования к каноническому виду
Евклидовы пространства
Евклидовы пространства
Ортогональные векторы евклидова пространства
Ортогональный базис евклидова пространства
Ортонормированный базис евклидова пространства
Ортогональные дополнения в евклидовом пространстве
Задача о перпендикуляре
Матрица и определитель Грама и его свойства
Линейные преобразования евклидовых пространств
Канонический вид ортогонального оператора евклидова пространства
Сопряженные операторы евклидова пространства
Самосопряженные операторы евклидова пространства
Приведение квадратичной формы к главным осям
Унитарные пространства и их линейные преобразования
Комплексный анализ
Комплексные числа
Комплексные числа в алгебраической форме
Комплексные числа в тригонометрической и показательной формах
Множества на комплексной плоскости
Последовательности и ряды комплексных чисел
Комплексные функции
Функции комплексного переменного. Предел, непрерывность и производная
Элементарные функции комплексного переменного
Дифференцирование функций комплексного переменного
Аналитические функции и их свойства
Конформные отображения
Функциональные ряды в комплексной области
и их свойства Интегрирование функций комплексного переменного
Функциональные ряды и последовательности
Степенные ряды и их свойства
Разложение функций в степенные ряды
Нули аналитических функций
Ряд Лорана и разложение функций по целым степеням
Особые точки, Вычеты
Изолированные особые точки функций и полюсы
Вычеты и их применение
Вычисление интегралов с помощью вычетов
Вычеты и расположение нулей многочлена
Операционное исчисление
Дифференциальные уравнения
ДУ первого порядка
Основные понятия и определения ДУ
Метод изоклин для ДУ 1-го порядка
Метод последовательных приближений
ДУ с разделяющимися переменными
Однородные ДУ
Линейные ДУ 1-го порядка
Дифференциальное уравнение Бернулли
ДУ в полных дифференциалах
Интегрирующий множитель
ДУ, не разрешенные относительно производной
Дифференциальное уравнение Риккати
Составление ДУ семейств линий
Задачи на траектории
Особые решения ДУ
ДУ высших порядков
Понятия и определения ДУ высших порядков
ДУ, допускающие понижение порядка
Линейная независимость функций
Определители Вронского и Грама
Однородные и неоднородные дифференциальные уравнения
Задача Коши и Уравнение Эйлера
Линейные ДУ с переменными коэффициентами
Метод Лагранжа решения ДУ
Краевые задачи для ДУ высших порядков
Разложение решения ДУ в степенной ряд
Разложение решения ДУ в обобщенный степенной ряд
Нахождение периодических решений ДУ
Асимптотическое интегрирование ДУ
Системы ДУ
Системы ДУ: понятия и определения
Сведение системы ДУ к одному уравнению
Нахождение интегрируемых комбинаций
Интегрирование однородных линейных систем ДУ
Методы интегрирования неоднородных систем ДУ
Преобразование Лапласа и решение ДУ и систем
Теория устойчивости
Численные методы
Методы алгебры
Численные методы линейной алгебры
Численные методы решения СЛАУ
Итерационный метод Шульца обратной матрицы
Методы решения задач о собственных значениях и векторах матрицы
Методы решения нелинейных уравнений
Методы решения систем нелинейных уравнений
Методы теории приближений
Методы приближения сеточных функций
Методы функциональной интерполяции
Методы интегрально-дифференциальной интерполяции
Методы интегрального сглаживания
Методы интерполяции и сглаживания сплайнами
Методы численного дифференцирования и интегрирования
Методы численного дифференцирования
Методы численного интегрирования
Методы решения обыкновенных ДУ
Численные методы решения задачи Коши
Разностные схемы для решения задачи Коши
Составные схемы для решения задачи Коши
Экстраполяционные методы решения задачи Коши
Непрерывно-дискретные методы решения задачи Коши
Численные методы решения краевых задач
Методы решения ДУ в частных производных
Численные методы решения уравнений математической физики с двумя переменными
Принципы построения разностных схем для уравнений в частных производных
Разностные схемы решения уравнений в частных производных 1-го порядка
Разностные схемы решения уравнений в частных производных 2-го порядка
Численные методы решения уравнений в частных производных
Численные методы решения уравнений математической физики с тремя переменными
|
Неразрешимые алгоритмические проблемыАлгоритмическая проблема — это проблема, в которой требуется найти единый метод (алгоритм) для решения бесконечной серии однотипных единичных задач. Такие проблемы называют также массовыми проблемами. Они возникали и решались в различных областях математики на протяжении всей ее истории. Примеры таких проблем рассматривались ранее. Математики в начале XX в. столкнулись с тем, что для некоторых массовых проблем не удается подобрать общий алгоритм для их решения. В связи с этим возникла необходимость дать точное определение самому понятию алгоритма. Мы познакомились с несколькими способами такого уточнения, и в настоящем параграфе приведем примеры алгоритмически неразрешимых массовых проблем. Сначала в качестве понятия, уточняющего понятие алгоритма, будем использовать понятие машины Тьюринга. Затем рассмотрим проблему алгоритмической разрешимости в рамках общей теории алгоритмов. Нумерация алгоритмовПонятие нумерации алгоритмов — важное средство для их исследования, в частности для доказательств несуществования единого алгоритма для решения той или иной массовой проблемы. Посмотрим сначала на это понятие в рамках нашей общей теории алгоритмов. Поскольку любой алгоритм можно задать конечным описанием (словом) (например, в конечном алфавите знаков, используемых при наборе математических книг), а множество всех конечных слов в фиксированном конечном алфавите счетно, то множество всех алгоритмов счетно. Это означает наличие взаимно-однозначного соответствия между множеством Нумерация всех алгоритмов является одновременно и нумерацией всех вычислимых функций в следующем смысле: номер функции Существование нумераций позволяет работать с алгоритмами как с числами. Это особенно удобно при исследовании алгоритмов над алгоритмами. Отсутствие именно таких алгоритмов часто приводит к алгоритмически неразрешимым проблемам. Нумерация машин ТьюрингаОпишем теперь более конкретный процесс нумерации всех машин Тьюринга, который используем при построении примера невычислимой по Тьюрингу функции. Будем считать, что для обозначения внутренних состояний машин Тьюринга используются буквы бесконечной последовательности: Выразим (или, как говорят, закодируем) все символы этих бесконечных последовательностей словами конечного стандартного алфавита
В стандартном алфавите программу машины Тьюринга можно записать в виде слова, руководствуясь следующим правилом. Сначала все команды программы переводятся на язык стандартного алфавита, для чего в записях этих команд Например, программа машины Тьюринга, рассмотренной в Примере 32.1, в этих обозначениях имеет вид: Опускаем символ " Выписываем эти слова подряд и получаем слово, кодирующее программу данной машины Тьюринга: Нетрудно указать алгоритм, позволяющий узнавать, является ли слово в стандартном алфавите программой некоторой машины Тьюринга. Такой алгоритм может, например, состоять в следующем. Нужно анализировать все подслова данного слова, заключенные между всевозможными парами букв из Таким образом, каждая машина Тьюринга вполне определяется некоторым конечным словом в конечном стандартном алфавите. Поскольку множество всех конечных слов в конечном алфавите счетно, то и всех мыслимых машин Тьюринга (отличающихся друг от друга по существу своей работы) имеется не более чем счетное множество. Перенумеруем теперь все машины Тьюринга, для чего все слова стандартного алфавита, представляющие собой программы всевозможных машин Тьюринга, расположим в виде фиксированной счетно-бесконечной последовательности, которую составим по такому правилу: сначала выписываются в какой-нибудь фиксированной последовательности все однобуквенные слова: Существование невычислимых по Тьюрингу функцийТеорема 36.1. Существует функция, не вычислимая по Тьюрингу, т.е. не вычислимая ни на одной машине Тьюринга. Доказательство. Функции, о которых идет речь, представляют собой функции, заданные и принимающие значения в множестве слов в алфавите Доказанная теорема есть чистая теорема существования. Интересно получить пример конкретной функции, не вычислимой по Тьюрингу. Пример 36.2. Укажем конкретную функцию, которую нельзя вычислить ни на какой машине Тьюринга. На основании тезиса Тьюринга это будет означать, что не существует вообще никакого алгоритма для вычисления значений такой функции. Рассмотрим следующую функцию Допустим противное. Это означает, что существует машина Тьюринга Принимая во внимание тезис Тьюринга, заключаем, что не существует вообще никакого алгоритма для вычисления значений функции Проблемы распознавания самоприменимости и применимостиЭто еще два примера алгоритмически не разрешимых проблем. Сначала о первой. Предположим, что на ленте машины Тьюринга записана ее собственная функциональная схема в алфавите машины. Если машина применима к такой конфигурации, то будем называть ее самоприменяемой, в противном случае — несамоприме-Няемой. Возникает массовая проблема распознавания самоприме-Кяемых машин Тьюринга, состоящая в следующем. По заданной Функциональной схеме (программе) машины Тьюринга устано-Вить, к какому классу относится машина: к классу самопримени-Mbix машин или к классу несамоприменимых машин. Теорема 36.3. Проблема распознавания самоприменимых машин Тьюринга алгоритмически не разрешима. ДоказательствоДопустим противное, т. е. алгоритм для такого распознавания существует. Значит, на основании тезиса Тьюринга, существует машина Тьюринга, реализующая данный алгоритм. Пусть Рассмотрим теперь такую машину Тьюринга Итак, На основании доказанной теоремы устанавливается алгоритмическая неразрешимость и некоторых других массовых проблем, возникающих в теории машин Тьюринга, например проблема распознавания применимости для машин Тьюринга, которая состоит в следующем. Заданы функциональная схема (программа) какой-нибудь машины Тьюринга и конфигурация в ней: узнать, применима ли машина к данной конфигурации или нет. Теорема 36.4. Проблема распознавания применимых машин Тьюринга алгоритмически не разрешима. Доказательство. Если бы существовал алгоритм для решения этой проблемы, то с его помощью можно было бы узнать, применима ли машина к слову, кодирующему ее собственную программу, т. е. самоприменима ли она. Но на основании предыдущей теоремы известно, что такого алгоритма не существует. Алгоритмически неразрешимые проблемы в общей теории алгоритмовИтак, мы установили алгоритмическую неразрешимость двух проблем, связанных с машинами Тьюринга: проблема распознавания самоприменимых машин Тьюринга (теорема 36.3) и проблема распознавания применимости для машин Тьюринга (теорема 36.4). Каждое из этих утверждений может быть сформулировано и доказано и в общей теории алгоритмов (в инвариантном виде). Теорема о неразрешимости проблемы остановки (т. е. проблемы распознавания применимости алгоритма) звучит так. Не существует алгоритма, который по номеру Теорему об алгоритмической неразрешимости проблемы самоприменимости алгоритмов можно сформулировать так. Не существует алгоритма Рассмотрим еще одну алгоритмическую проблему об алгоритмах и докажем ее неразрешимость. Это проблема определения обще-рекурсшности алгоритмов (и функции), т.е. проблема определения того, ко всяким ли допустимым начальным данным применим алгоритм. Прежде докажем лемму. Лемма 36.5. Для любого перечисления любого множества Доказательство. Пусть (Заметим, что если бы в перечислении допускались частичные функции, то такое определение функции Теорема 36.6. Проблема определения общерекурсивности алгоритмов неразрешима, т. е. не существует алгоритма Доказательство. Допустим противное, т. е. такой алгоритм Так как номеров всюду определенных функций (и, следовательно, точек Раз нельзя указать единого алгоритма, отличающего всюду определенные вычислимые (т. е. общерекурсивные) функции от частично рекурсивных, попытаемся подойти к проблеме частично рекурсивных функций с другой стороны. Может быть, возможно каждую частично рекурсивную функцию доопределить на неопределимых точках так, чтобы получилась рекурсивная (т. е. общерекурсивная) функция. Оказывается, и эта задача неразрешима, что следует из теоремы, приведенной ниже. Теорема 36.7. Существует такая частично рекурсивная функция Доказательство. Как и прежде, считаем, что выбрана некоторая вычислимая нумерация Ясно, что функция Пусть теперь Следовательно, существуют частичные алгоритмы, которые нельзя доопределить до всюду определенных алгоритмов. Теорема РаисаЭта теорема описывает в рамках общей теории алгоритмов еще один достаточно обширный круг алгоритмически не разрешимых проблем. Рассмотренные ранее подобные проблемы носили довольно экзотический характер: все они были так или иначе связаны с самоприменимостью алгоритма, когда алгоритм работает с собственным описанием (находится значение вычислимой функции По-прежнему имеется некоторая нумерация алгоритмов Теорема 36.8 (Райе). Пусть ДоказательствоДопустим противное, т. е. множество Пусть Функция Зафиксируем в функции Отсюда ясно, что Последнее означает следующее. Поскольку функции Если рассмотреть случай, когда Теорема Раиса означает, что не существует единого алгоритма, который для каждой вычислимой функции (по ее номеру) определял бы, обладает эта функция тем или иным свойством или нет, например, является ли эта функция постоянной, монотонной, периодической, ограниченной и т. п. Но это лишь первое приближение к пониманию смысла этой теоремы. Дело в том, что мы пытаемся создать единый алгоритм, который имеет дело с функциями. Но что значит иметь дело с функцией? Функция должна быть как-то задана. В данном случае функция В частности, оказывается неразрешимой проблема эквивалентности алгоритмов (упоминавшаяся нами ранее): по двум заданным алгоритмам нельзя узнать, вычисляют они одну и ту же функцию или нет. Каждый, кто имел дело с программированием (написанием компьютерных программ), знает, что по тексту сколько-нибудь сложной программы, не запуская ее в работу, трудно понять, что она делает (какую функцию вычисляет). Если это понимание и приходит, то каждый раз по-своему; единого метода здесь не существует. Это своего рода практическое проявление теоремы Раиса. Мы уже обсуждали проблемы синтаксиса и семантики языка при рассмотрении формальных теорий. В теории алгоритмов появляется еще один аспект этой проблемы. Синтаксические свойства алгоритма — это свойства описывающих его текстов, т.е. свойства конечных слов в фиксированном алфавите. Семантические (или смысловые) свойства алгоритма связаны с тем, что он делает. Хорошо известно, что в процессе отладки программ синтаксические ошибки отыскиваются довольно легко (этому, в частности, способствуют и дополнительные программы-алгоритмы). Главные неприятности связаны именно с анализом семантики неотлаженной программы, т.е. с попытками установить, что же она делает вместо того, чтобы делать то, что мы хотим (и здесь нам уже никакие дополнительные программы помочь не могут). Образно выражаясь, можно сказать, что теорема Раиса звучит так: по синтаксису алгоритма ничего нельзя узнать о его семантике. Другие примеры алгоритмической неразрешимостиРанее отмечалось, что не существует алгоритма, позволяющего для каждой формулы логики предикатов определить, будет ли формула выполнимой или общезначимой. Это означает, что массовые проблемы разрешения для общезначимости и выполнимости формул логики предикатов алгоритмически не разрешимы. Одной из наиболее знаменитых алгоритмических проблем математики являлась 10-я проблема Гильберта, поставленная им в числе других в 1901 г. на Международном математическом конгрессе в Париже. Требовалось найти алгоритм, определяющий для любого диафантова уравнения, имеет ли оно целочисленное решение. Диафантово уравнение есть уравнение вида Существует множество и других алгоритмических проблем, относительно которых установлена их неразрешимость. Среди них ряд алгебраических проблем, приводящих к различным вариантам проблемы слов, которые исследовались советскими математиками А.А.Марковым, П.С.Новиковым, А.И.Мальцевым. В заключение еще раз отметим, что алгоритмическая неразрешимость означает лишь отсутствие единого способа для решения всех единичных задач данной бесконечной серии, в то время как каждая индивидуальная задача серии вполне может быть решена своим индивидуальным способом. Более того, может оказаться разрешимой (своим индивидуальным методом) не только каждая отдельная задача этого класса, но и целые подклассы задач этого класса. Поэтому, если проблема неразрешима в общем случае, нужно искать ее разрешимые частные случаи. Задача в более общей постановке имеет больше шансов оказаться неразрешимой. Так, несмотря на отсутствие единого алгоритма, позволяющего для каждой формулы логики предикатов определить, является ли она выполнимой или общезначимой, мы ранее ответили на этот вопрос применительно к конкретным индивидуальным формулам, также сумели даже отыскать алгоритмы решения данной задачи для целых классов формул некоторых специальных видов. Аналогична ситуация с диафантовыми уравнениями. Например, для частного случая диафантова уравнения хорошо известно, что все его целые корни следует искать среди делителей свободного члена В то же время понимание сути проблемы алгоритмической неразрешимости и знание основных алгоритмических неразрешимостей является одним из важных элементов современной математической и логической культуры, особенно для тех, кто имеет профессиональные дела, связанные с компьютерами, программированием и информатикой.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |