Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Машины Тьюринга и тезис | |
---|---|
Онлайн-сервисы
Нахождение НОД и НОК
Разложение числа на простые множители
Сравнения по модулю
Операции над множествами
Операции над векторами
Разложение вектора по базису. Доказательство, что векторы образуют базис
Чертёж треугольника по координатам вершин
Решение треугольника
Решение Пирамиды
Построение Пирамиды по координатам вершин
Чертёж многоугольника по координатам вершин
Решение систем методом Крамера и Матричным
Онлайн построение графика кривой 2-го порядка
Определение вида кривой или поверхности 2-го порядка по инвариантам
МНК и регрессионный анализ Онлайн + графики
Онлайн число, сумма и дата прописью
Алгоритмы JavaScript
Алгоритмы поиска
Алгоритмы сортировки
Уникальные элементы массива
Объединение, пересечение и разность массивов
НОД и НОК
Операции над матрицами
Дата прописью
Введение в анализ
Функции: понятие, определение, графики
Непрерывность функции
Исследование функции и построение графика
Теория множеств
Множества: понятие, определение, примеры
Точечные множества
Замкнутые и открытые множества
Мера множества
Группы, кольца, поля в математике
Поле комплексных чисел
Кольцо многочленов
Основная теорема алгебры и ее следствия
Математическая логика
Алгебра высказываний
Аксиоматика и логические рассуждения
Методы доказательств теорем
Алгебра высказываний и операции над ними
Формулы алгебры высказываний
Тавтологии алгебры высказываний
Логическая равносильность формул
Нормальные формы для формул высказываний
Логическое следование формул
Приложение алгебры высказываний для теорем
Дедуктивные и индуктивные умозаключения
Решение логических задач
Принцип полной дизъюнкции
Булевы функции
Множества, отношения и функции в логике
Булевы функции от одного и двух аргументов
Булевы функции от n аргументов
Системы булевых функций
Применение булевых функций к релейно-контактным схемам
Релейно-контактные схемы в ЭВМ
Практическое применение булевых функций
Теория формального
Формализованное исчисление высказываний
Полнота и другие свойства формализованного исчисления высказываний
Независимость системы аксиом формализованного исчисления высказываний
Логика предикатов
Логика предикатов
Логические операции над предикатами
Кванторные операции над предикатами
Формулы логики предикатов
Тавтологии логики предикатов
Преобразования формул и следование их предикатов
Проблемы разрешения для общезначимости и выполнимости формул
Применение логики предикатов в математике
Строение математических теорем
Аристотелева силлогистика и методы рассуждений
Принцип полной дизъюнкции в предикатной форме
Метод полной математической индукции
Необходимые и достаточные условия
Логика предикатов и алгебра множеств
Формализованное исчисление предикатов
Неформальные и формаль-ные аксиоматические теории
Неформальные аксиоматические теории
Свойства аксиоматических теорий
Формальные аксиоматические теории
Формализация теории аристотелевых силлогизмов
Свойства формализованного исчисления предикатов
Формальные теории первого порядка
Формализация математической теории
Теория алгоритмов
Интуитивное представление об алгоритмах
Машины Тьюринга и тезис
Рекурсивные функции
Нормальные алгоритмы Маркова
Разрешимость и перечислимость множеств
Неразрешимые алгоритмические проблемы
Теорема Гёделя о неполноте формальной арифметики
Математическая логика и компьютеры
Дискретная математика
Множества и отношения
Теория множеств: понятия и определения
Операции над множествами
Кортеж и декартово произведение множеств
Соответствия и бинарные отношения на множествах
Операции над соответствиями на множествах
Семейства множеств
Специальные свойства бинарных отношений
Отношения эквивалентности на множестве
Упорядоченные множества
Теорема о неподвижной точке
Мощность множества
Парадокс Рассела
Метод характеристических функций
Группы и кольца
Алгебраические структуры и операции
Группоиды, полугруппы, группы
Кольца, тела, поля
Области целостности в теории колец
Модули и линейные пространства
Подгруппы и подкольца
Теорема Лагранжа о порядке конечной группы
Гомоморфизмы групп и нормальные делители
Гомоморфизмы и изоморфизмы колец
Алгебра кватернионов
Полукольца и булевы алгебры
Полукольца: определение, аксиомы, примеры
Замкнутые полукольца
Полукольца и системы линейных уравнений
Булевы алгебры и полукольца
Решетки и полурешетки
Алгебраические системы
Алгебраические системы: модели и алгебры
Подсистемы алгебраических систем
Конгруэнции и фактор-системы
Гомоморфизмы алгебраических систем
Прямые произведения алгебраических систем
Конечные булевы алгебры
Многосортные алгебры
Теория графов
Теория графов: основные понятия и определения
Способы представления графов
Неориентированные и ориентированные деревья
Остовное дерево и алгоритм Краскала
Методы систематического обхода вершин графа
Алгоритмы поиска в глубину и ширину в графах
Задача о путях во взвешенных ориентированных графах
Изоморфизм, гомоморфизм и автоморфизм графов
Топологическая сортировка вершин графа
Элементы цикломатики в теории графов
Булева алгебра и функции
Булевы функции и булев куб
Таблицы булевых функций и булев оператор
Равенство булевых функций. Фиктивные переменные
Формулы и суперпозиции булевых функций
Дизъюнктивные и конъюнктивные нормальные формы
Построение минимальных ДНФ
Теорема Поста и классы
Критерий Поста
Схемы из функциональных элементов
Конечные автоматы и регулярные языки
Конечные автоматы и регулярные языки
Алфавит, слово, язык в программировании
Порождающие грамматики (грамматики Хомского)
Классификация грамматик и языков
Регулярные языки и регулярные выражения
Конечные автоматы
Допустимость языка конечным автоматом
Теорема Клини
Детерминизация конечных автоматов
Минимизация конечных автоматов
Лемма о разрастании для регулярных языков
Обоснование алгоритма детерминизации автоматов
Конечные автоматы с выходом
Морфизмы и конечные подстановки
Машины Тьюринга
Контекстно-свободные языки
Контекстно-свободные языки и грамматики
Приведенная форма КС-грамматики
Лемма о разрастании для КС-языков
Магазинные автоматы (автомат с магазинной памятью)
Алгоритм построения МП-автомата по КС-грамматике
Алгоритм построения КС-грамматики по МП-автомату
Алгебраические свойства КС-языков
Основное свойство суперпозиции КС-языков
Пересечение контекстно-свободных языков
Методы синтаксического анализа КС-языков
Восходящий синтаксический анализ и LR(k)-грамматики
Семантика формальных языков
Принцип индукции по неподвижной точке
Графовое представление МП-автоматов
Интегральное исчисление
Неопределённый и определённый
Неопределенный и определенный интегралы
Свойства интегралов
Интегрирование по частям
Интегрирование методом замены переменной
Интегрирование различных рациональных функций
Интегрирование различных иррациональных функций
Интегрирование различных тригонометрических функций
Определенный интеграл и его основные свойства
Необходимое и достаточное условие интегрируемости
Теоремы существования первообразной
Свойства определенных интегралов
Несобственные интегралы
Интегральное определение логарифмической функции
Приложения интегралов
Вычисление площадей плоских фигур
Площади фигур в различных координатах
Вычисление объемов тел с помощью интегралов
Объём тела вращения
Вычисление длин дуг кривых
Формулы длины дуги регулярной кривой
Кривизна плоской кривой
Площадь поверхности вращения тела
Интегралы в физике
Статические моменты и координаты центра тяжести
Теоремы Гульдина–Паппа
Вычисление моментов инерции
Другие приложения интегралов в физике
Основные интегралы
Вариационное исчисление
Примеры вариационных задач
Дифференциальное уравнение Эйлера
Функционалы, зависящие от нескольких функций
Задача о минимуме кратного интеграла
Финансовый анализ
Анализ эффективности
Критерии и показатели эффективности предприятия
Методы анализа эффективности деятельности
Факторный анализ прибыли от операционной деятельности
Анализ безубыточности предприятия
Операционный рычаг и эффект финансового рычага
Анализ и оценка состава, структуры и динамики доходов и расходов
Анализ рентабельности и резервов устойчивого роста капитала
Анализ распределения прибыли предприятия
Анализ и оценка чувствительности показателей эффективности
Анализ устойчивости
Финансовая устойчивость и долгосрочная платежеспособность
Характеристика типов финансовой устойчивости
Рыночная активность
Финансовый анализ рыночной активности
Методика анализа рыночной активности
Анализ и оценка дивидендного дохода на одну акцию
Инвестиционная деятельность
Инвестиции: экономическая сущность и классификация
Государственное регулирование инвестиционной деятельности
Источники финансовых ресурсов на капитальные вложения
Инвестиции в основные фонды
Оценка состояния основных фондов
Амортизация основных фондов
Капитальное строительство в инвестиционном процессе
Планирование инвестиций в форме капитальных вложений
Экономическая эффективность инвестиций
Финансирование капитальных вложений
Кредитование капитальных вложений
Кредитоспособность
Финансирование и кредитование затрат
Финансирование и кредитование инвестиционной деятельности потребительской кооперации
Финансирование и кредитование капитальных вложений потребительской кооперации
Инвестиционное строительное проектирование
Анализ инвестиций
Инвестиции и инвестиционная деятельность предприятия
Задачи финансового анализа инвестиций предприятия
Учет фактора времени в инвестиционной деятельности
Аннуитет и финансовая рента в инвестициях
Учет фактора инфляции при инвестировании
Оценка фактора риска инвестиционного проекта
Методы оценки эффективности инвестиций
Показатели эффективности инвестиционного проекта
Стоимость компании
Концепция построения международных стандартов финансовой отчетности (МСФО)
Экономическое содержание международных стандартов финансовой отчётности
Цели и принципы оценки стоимости акций и активов компании
Оценка акций и активов предприятия по справедливой стоимости
Методы оценки справедливой стоимости акций предприятия
Затратный подход к оценки стоимости компаний и акций
Сравнительный подход к оценки стоимости предприятий и акций
Доходный подход к оценке стоимости компании и акций
Выбор ставки дисконтирования при инвестировании в акции
Метод капитализации прибыли
Сравнение подходов к оценке стоимости компаний и пакетов акций
Форвардные контракты
Форвардный контракт и цена
Форвардная цена акции на бирже
Цена форвардного контракта инвестора
Форвардная цена акции с учетом величины дивиденда
Форвардная цена акции с учетом ставки дивиденда
Форвардная цена валюты на рынке форекс
Форвардный валютный курс и инфляция на рынке
Форвардная цена товара и спотовый рынок
Форвардная цена при различии ставок по кредитам и депозитам
Синтетический форвардный контракт на акции и валюту
Теория вероятностей
Основные понятия теории вероятностей
Зависимые и независимые случайные события
Повторные независимые испытания
Формула Бернулли
Одномерные случайные величины
Многомерные случайные величины
Функции случайных величин
Законы распределения целочисленных случайных величин
Законы распределения непрерывных случайных величин
Предельные теоремы теории вероятностей
Закон больших чисел и предельные теоремы
Вероятностные закономерности
Математическая статистика
Элементы математической статистики
Выборочный метод
Оценки параметров генеральной совокупности
Статистические гипотезы
Критерии согласия
Теоретические и эмпирические частоты
Теория очередей (СМО)
Определение системы массового обслуживания
Уравнения Колмогорова
Предельные вероятности состояний
Определение СМО с отказами
Определение СМО с ожиданием (очередью)
Аналитическая геометрия
Векторная алгебра
Метрические понятия и аксиомы геометрии
Равенство и подобие геометрических фигур
Бинарные отношения
Вектор, его направление и длина
Линейные операции над векторами
Линейная зависимость и независимость векторов
Отношение коллинеарных векторов
Проекции векторов на прямую и на плоскость
Угол между векторами
Ортогональные проекции векторов
Координата вектора на прямой и базис
Координаты вектора на плоскости и базис
Координаты вектора в пространстве и базис
Операции над векторами в координатной форме
Ортогональный и ортонормированный базисы
Cкалярное произведение векторов и его свойства
Выражение скалярного произведения через координаты векторов
Векторное произведение векторов и его свойства
Смешанное произведение векторов и его свойства
Ориентированные площади и объемы
Двойное векторное произведение и его свойства
Применение векторов в задачах на аффинные свойства фигур
Применение произведений векторов при решении геометрических задач
Применение векторной алгебры в механике
Системы координат
Прямоугольные координаты
Преобразования прямоугольных координат
Полярная система координат
Цилиндрическая система координат
Сферические координаты
Аффинные координаты
Аффинные преобразования координат
Аффинные преобразования плоскости
Примеры аффинных преобразований плоскости
Аффинные преобразования пространства
Многомерное координатное пространство
Линейные и аффинные подпространства
Скалярное произведение n-мерных векторов
Преобразования систем координат
Геометрия на плоскости
Алгебраические линии на плоскости
Общие уравнения геометрических мест точек
Алгебраические уравнения линий на плоскости
Уравнения прямой, проходящей через точку перпендикулярно вектору
Уравнения прямой, проходящей через точку коллинеарно вектору
Уравнения прямой, проходящей через две точки
Уравнения прямой с угловым коэффициентом
Взаимное расположение прямых
Примеры задач с прямыми на плоскости
Системы неравенств с двумя неизвестными
Системы линейных уравнений с двумя неизвестными
Линии 2-го порядка
Канонические уравнения линий второго порядка
Порядок приведения уравнения линии к каноническому виду
Эллипс
Гипербола
Парабола
Квадратичные неравенства с двумя неизвестными
Применение линий 1-го и 2-го порядков в задачах на экстремум функций
Инварианты линий
Классификация линий 2-го порядка по инвариантам
Приведение уравнения линии к каноническому виду по инвариантам
Геометрия в пространстве
Способы задания ГМТ в пространстве
Алгебраические уравнения поверхностей
Уравнения плоскости, проходящей через точку перпендикулярно вектору
Уравнения плоскости, компланарной двум неколлинеарным векторам
Уравнения плоскости, проходящей через три точки
Взаимное расположение плоскостей
Типовые задачи с плоскостями
Уравнения прямых в пространстве
Взаимное расположение прямых в пространстве
Типовые задачи с прямыми в пространстве
Поверхности 2-го порядка
Канонические уравнения поверхностей
Порядок приведения уравнения поверхности к каноническому виду
Поверхности второго порядка
Эллипсоиды
Гиперболоиды
Конусы
Параболоиды
Применение поверхностей 1-го и 2-го порядков в задачах на экстремум функций
Инварианты поверхностей
Линейная алгебра
Матрицы и операции
Линейные операции над матрицами
Умножение матриц
Возведение матриц в степень
Многочлены от матриц
Транспонирование и сопряжение матриц
Блочные матрицы
Произведение и сумма матриц Кронекера
Метод Гаусса приведения матрицы к ступенчатому виду
Элементарные преобразования матриц
Определители
Определители матриц и их основные свойства
Формула полного разложения определителя
Формула Лапласа полного разложения определителя
Определитель произведения матриц
Методы вычисления определителей
Ранг матрицы
Линейная зависимость и линейная независимость строк (столбцов) матрицы
Ранг матрицы и базисный минор матрицы
Методы вычисления ранга матрицы
Ранг системы столбцов (строк)
Обратная матрица
Обратные матрицы и их свойства
Ортогональные и унитарные матрицы
Способы нахождения обратной матрицы
Матричные уравнения
Односторонние обратные матрицы
Скелетное разложение матрицы
Полуобратная матрица
Псевдообратная матрица
Системы уравнений
Системы линейных алгебраических уравнений
Метод Гаусса решения систем линейных уравнений
Структура общего решения системы уравнений
Решение систем с помощью полуобратных матриц
Псевдорешения системы линейных уравнений
Функциональные матрицы
Функциональные матрицы скалярного аргумента
Производные матриц по векторному аргументу
Линейные и квадратичные формы и их преобразования
Приведение форм к каноническому виду
Закон инерции вещественных квадратичных форм
Знакоопределенность форм вещественных квадратичных
Формы и исследование функций на экстремум
Многочленные матрицы
Многочленные матрицы (лямбда-матрицы)
Операции над лямбда-матрицами
Простые преобразования многочленных матриц
Инвариантные множители многочленной матрицы
Функции от матриц
Собственные векторы и значения матрицы
Подобие числовых матриц
Характеристический многочлен матрицы
Минимальный многочлен матрицы
Теорема Гамильтона-Кэли
Жорданова форма матрицы
Приведение матрицы к жордановой форме
Многочлены от матриц
Применение многочленов от матриц
Функции от матриц
Линейные пространства
Линейные пространства: определение и примеры
Линейная зависимость и независимость n-мерных векторов
Размерность и базис линейного пространства
Преобразования координат в линейном пространстве
Изоморфизм линейных пространств
Подпространства
Подпространства линейного пространства
Пересечение и сумма подпространств
Способы описания подпространств
Нахождение дополнения и суммы подпространств
Нахождение пересечения подпространств
Линейные отображения
Линейные многообразия
Линейные отображения
Матрица линейного отображения
Ядро и образ линейного отображения
Линейные операторы
Линейные операторы (преобразования)
Инвариантные подпространства
Собственные векторы и значения оператора
Свойства собственных векторов операторов
Канонический вид линейного оператора
Методика приведения линейного преобразования к каноническому виду
Евклидовы пространства
Евклидовы пространства
Ортогональные векторы евклидова пространства
Ортогональный базис евклидова пространства
Ортонормированный базис евклидова пространства
Ортогональные дополнения в евклидовом пространстве
Задача о перпендикуляре
Матрица и определитель Грама и его свойства
Линейные преобразования евклидовых пространств
Канонический вид ортогонального оператора евклидова пространства
Сопряженные операторы евклидова пространства
Самосопряженные операторы евклидова пространства
Приведение квадратичной формы к главным осям
Унитарные пространства и их линейные преобразования
Комплексный анализ
Комплексные числа
Комплексные числа в алгебраической форме
Комплексные числа в тригонометрической и показательной формах
Множества на комплексной плоскости
Последовательности и ряды комплексных чисел
Комплексные функции
Функции комплексного переменного. Предел, непрерывность и производная
Элементарные функции комплексного переменного
Дифференцирование функций комплексного переменного
Аналитические функции и их свойства
Конформные отображения
Функциональные ряды в комплексной области
и их свойства Интегрирование функций комплексного переменного
Функциональные ряды и последовательности
Степенные ряды и их свойства
Разложение функций в степенные ряды
Нули аналитических функций
Ряд Лорана и разложение функций по целым степеням
Особые точки, Вычеты
Изолированные особые точки функций и полюсы
Вычеты и их применение
Вычисление интегралов с помощью вычетов
Вычеты и расположение нулей многочлена
Операционное исчисление
Дифференциальные уравнения
ДУ первого порядка
Основные понятия и определения ДУ
Метод изоклин для ДУ 1-го порядка
Метод последовательных приближений
ДУ с разделяющимися переменными
Однородные ДУ
Линейные ДУ 1-го порядка
Дифференциальное уравнение Бернулли
ДУ в полных дифференциалах
Интегрирующий множитель
ДУ, не разрешенные относительно производной
Дифференциальное уравнение Риккати
Составление ДУ семейств линий
Задачи на траектории
Особые решения ДУ
ДУ высших порядков
Понятия и определения ДУ высших порядков
ДУ, допускающие понижение порядка
Линейная независимость функций
Определители Вронского и Грама
Однородные и неоднородные дифференциальные уравнения
Задача Коши и Уравнение Эйлера
Линейные ДУ с переменными коэффициентами
Метод Лагранжа решения ДУ
Краевые задачи для ДУ высших порядков
Разложение решения ДУ в степенной ряд
Разложение решения ДУ в обобщенный степенной ряд
Нахождение периодических решений ДУ
Асимптотическое интегрирование ДУ
Системы ДУ
Системы ДУ: понятия и определения
Сведение системы ДУ к одному уравнению
Нахождение интегрируемых комбинаций
Интегрирование однородных линейных систем ДУ
Методы интегрирования неоднородных систем ДУ
Преобразование Лапласа и решение ДУ и систем
Теория устойчивости
Численные методы
Методы алгебры
Численные методы линейной алгебры
Численные методы решения СЛАУ
Итерационный метод Шульца обратной матрицы
Методы решения задач о собственных значениях и векторах матрицы
Методы решения нелинейных уравнений
Методы решения систем нелинейных уравнений
Методы теории приближений
Методы приближения сеточных функций
Методы функциональной интерполяции
Методы интегрально-дифференциальной интерполяции
Методы интегрального сглаживания
Методы интерполяции и сглаживания сплайнами
Методы численного дифференцирования и интегрирования
Методы численного дифференцирования
Методы численного интегрирования
Методы решения обыкновенных ДУ
Численные методы решения задачи Коши
Разностные схемы для решения задачи Коши
Составные схемы для решения задачи Коши
Экстраполяционные методы решения задачи Коши
Непрерывно-дискретные методы решения задачи Коши
Численные методы решения краевых задач
Методы решения ДУ в частных производных
Численные методы решения уравнений математической физики с двумя переменными
Принципы построения разностных схем для уравнений в частных производных
Разностные схемы решения уравнений в частных производных 1-го порядка
Разностные схемы решения уравнений в частных производных 2-го порядка
Численные методы решения уравнений в частных производных
Численные методы решения уравнений математической физики с тремя переменными
|
Машины Тьюринга и тезисВведение понятия машины Тьюринга явилось одной из первых и весьма удачных попыток дать точный математический эквивалент для общего интуитивного представления об алгоритме. Это понятие названо по имени английского математика, сформулировавшего его в 1937 г., за 9 лет до появления первой электронно-вычислительной машины. Определение машины ТьюрингаМашина Тьюринга есть математическая (воображаемая) машина, а не машина физическая. Она есть такой же математический объект, как функция, производная, интеграл, группа и т.д. И так же как и другие математические понятия, понятие машины Тьюринга отражает объективную реальность, моделирует некие реальные процессы. Именно Тьюринг предпринял попытку смоделировать действия математика (или другого человека), осуществляющего некую умственную созидательную деятельность. Такой человек, находясь в определенном "умонастроении" ("состоянии"), просматривает некоторый текст. Затем он вносит в этот текст какие-то изменения, проникается новым "умонастроением" и переходит к просмотру последующих записей. Машина Тьюринга действует примерно также. Ее удобно представлять в виде автоматически работающего устройства. В каждый дискретный момент времени устройство, находясь в некотором состоянии, обозревает содержимое одной ячейки протягиваемой через устройство ленты и делает шаг, заключающийся в том, что устройство переходит в новое состояние, изменяет (или оставляет без изменения) содержимое обозреваемой ячейки и переходит к обозрению следующей ячейки — справа или слева. Причем шаг осуществляется на основании предписанной команды. Совокупность всех команд представляет собой программу машины Тьюринга. Опишем теперь машину Тьюринга Далее, в каждый момент времени машина Работа машины (32.1) где Как же работает машина Тьюринга? Находясь в какой-либо момент времени в незаключительном состоянии (т. е. в состоянии, отличном от 1) содержимое 2) машина переходит в новое состояние 3) машина переходит к обозрению следующей правой ячейки от той, которая обозревалась только что, если В следующий момент времени (если Поскольку работа машины, по условию, полностью определяется ее состоянием Словом в алфавите Если выбрать какую-либо незаключительную конфигурацию машины Тьюринга в качестве исходной, то работа машины будет состоять в том, чтобы последовательно (шаг за шагом) преобразовывать исходную конфигурацию в соответствии с программой машины до тех пор, пока не будет достигнута заключительная конфигурация. После этого работа машины Тьюринга считается закончившейся, а результатом работы считается достигнутая заключительная конфигурация. Будем говорить, что непустое слово а в алфавите Применение машин Тьюринга к словамПроиллюстрируем на примерах все введенные понятия, связанные с машинами Тьюринга. Пример 32.1. Дана машина Тьюринга с внешним алфавитом Посмотрим, в какое слово переработает эта машина слово 101, исходя из стандартного начального положения. Будем последовательно выписывать конфигурации машины при переработке ею этого слова. Имеем стандартное начальное положение: На первом шаге действует команда: На втором шаге действует команда: Наконец, третий шаг обусловлен командой: Эта конфигурация является заключительной, потому что машина оказалась в состоянии остановки Таким образом, исходное слово 101 переработано машиной в слово 10101. Полученную последовательность конфигураций можно записать более коротким способом. Конфигурация (1) записывается в виде следующего слова в алфавите Приведем последовательность конфигураций при переработке этой машиной слова 11011, исходя из начального положения, при котором в состоянии Более короткая запись этой последовательности конфигураций, те. процесса работы машины, будет Таким образом, слово 11011 переработано машиной в слово 110111. Пример 32.2. Машина Тьюринга задается внешним алфавитом Посмотрим, как эта машина перерабатывает некоторые слова, и постараемся обнаружить закономерность в ее работе. Предварительно заметим, что программа машины может быть записана также в виде следующей таблицы: Чтобы определить по таблице, что будет делать машина, находясь, например, в состоянии Применим эту машину к слову Предлагается проверить самостоятельно, что данная машина Тьюринга осуществляет следующие преобразования конфигураций: Нетрудно заметить, что данная машина Тьюринга реализует операцию сложения: в результате ее работы на ленте записано подряд столько единиц, сколько их было всего записано по обе стороны от звездочки перед началом работы машины. Этот маленький опыт работы с машинами Тьюринга позволяет сделать некоторые выводы. Так тщательно описанное устройство этой машины (разбитая на ячейки лента, считывающая головка) по существу не имеет никакого значения. Машина Тьюринга — не что иное, как некоторое правило (алгоритм) для преобразования слов алфавита Конструирование машин ТьюрингаСоздание (синтез) машин Тьюринга (т.е. написание соответствующих программ) является задачей значительно более сложной, нежели процесс применения данной машины к данным словам. Пример 32.3. Попытаемся построить такую машину Тьюринга, которая из В качестве внешнего алфавита возьмем двухэлементное множество Начнем с того, что сотрем первую единицу, если она имеется, перейдем к обозрению следующей левой ячейки и сотрем там единицу, если она в этой ячейке записана. На каждом таком переходе машина должна переходить в новое внутреннее состояние, ибо в противном случае будут стерты вообще все единицы, записанные подряд. Вот команды, осуществляющие описанные действия: Машина находится в состоянии Теперь остается рассмотреть ситуации, когда на ленте записана всего одна единица или не записано ни одной. Если на ленте записана одна единица, то после первого шага (выполнив команду Запишем составленную программу (функциональную схему) построенной машины Тьюринга в виде таблицы: В заключение отметим следующее. Созданная нами машина Тьюринга может применяться не только к словам в алфавите Вычислимые по Тьюрингу функцииОпределение 32.4. Функция называется вычислимой по Тьюрингу, если существует машина Тьюринга, вычисляющая ее, т.е. такая машина Тьюринга, которая вычисляет ее значения для тех наборов значений аргументов, для которых функция определена, и работающая вечно, если функция для данного набора значений аргументов не определена. Остается договориться о некоторых условностях для того, чтобы это определение стало до конца точным. Во-первых, напомним, что речь идет о функциях (или возможно о частичных функциях, т. е. не всюду определенных), заданных на множестве натуральных чисел и принимающих также натуральные значения. Во-вторых, нужно условиться, как записывать на ленте машины Тьюринга значения хи Здесь полезно ввести следующие обозначения. Для натурального Дополнительно полагаем Обратимся к примерам. Нетрудно понять, что машина Тьюринга из примера 32.2 по существу вычисляет функцию Пример 32.5. Построим машину Тьюринга, вычисляющую функцию Сконструировать машину Тьюринга — значит написать (составить) ее программу. В этом процессе два этапа: сначала создается алгоритм вычисления значений функции, а затем он записывается на языке машины Тьюринга (программируется). В качестве внешнего алфавита возьмем двухэлементное множество Сделаем начало вычислительного процесса таким: машина обозревает ячейки, двигаясь справа налево, и каждую вторую единицу превращает в 0. Такое начало обеспечивается следующими командами: Если число В результате их выполнения получим конфигурацию (*) Заменим 0, перед которым остановились, на 1 и продвинемся вправо до ближайшего 0: Получим конфигурацию Получим конфигурацию Получим конфигурацию В результате чего получим конфигурацию Получим конфигурацию (**) в которой левее обозреваемой ячейки записана серия пар выполнив который, придем к следующей конфигурации: Получим конфигурацию Если теперь перешагнем вправо по ленте через обозреваемую единицу и переведем машину в состояние то придем к следующей конфигурации: Как же завершается работа программы? В некоторый момент конфигурация будет иметь вид Заключительная конфигурация имеет вид: Запишем программу машины Тьюринга в табличной форме: Предлагается самостоятельно проследить за работой этой машины Тьюринга, взяв в качестве исходных конкретные слова: 111, 1111, 111111, 1111111111. Правильная вычислимость функций на машине ТьюрингаВ предыдущем пункте мы рассмотрели вопрос о том, что значит и каким образом "данная машина Тьюринга вычисляет функцию В дальнейшем нам понадобится более сильное понятие вычислимости функции на машине Тьюринга — понятие правильной вычислимости. Определение 32.6. Будем говорить, что машина Тьюринга правильно вычисляет функцию Пример 32.7. Приведем программы машин Тьюринга, правильно вычисляющих функции Функция Соответствующую машину Тьюринга обозначили Пример 32.8. Построить две машины "левый сдвиг" Программа машины Композиция машин ТьюрингаОпределение 32.9. Пусть заданы машины Тьюринга Введенное понятие является удобным инструментом для конструирования машин Тьюринга. Покажем это на примере. Пример 32.10. Сконструируем машины Тьюринга, правильно вычисляющие функции-проекторы Рассмотрим сначала конкретный случай Таким образом, функция Проверьте самостоятельно, что функция Теперь мы можем представить себе алгоритм построения композиции машин Затем, двигаясь влево, транспонировать (с помощью Теперь нужно дойти до крайнего правого массива с помощью (n-1)-кратного применения правого сдвига Наконец, нужно стирать последовательно справа налево все массивы единиц, кроме первого: Итак, данную функцию (правильно) вычисляет следующая машина Тьюринга: При т.е. совпадает с построенной выше машиной. При Тезис Тьюринга (основная гипотеза теории алгоритмов)Вернемся к интуитивному представлению об алгоритмах. Напомним, одно из свойств алгоритма заключается в том, что он представляет собой единый способ, позволяющий для каждой задачи из некоего бесконечного множества задач за конечное число шагов найти ее решение. На понятие алгоритма можно взглянуть и с несколько иной точки зрения. Каждую задачу из бесконечного множества задач можно выразить (закодировать) некоторым словом некоторого алфавита, а решение задачи — каким-то другим словом того же алфавита. В результате получим функцию, заданную на некотором подмножестве множества всех слов выбранного алфавита и принимающую значения в множестве всех слов того же алфавита. Решить какую-либо задачу — значит найти значение этой функции на слове, кодирующем данную задачу. А иметь алгоритм для решения всех задач данного класса — значит иметь единый способ, позволяющий в конечное число шагов "вычислять" значения построенной функции для любых значений аргумента из ее области определения. Таким образом, алгоритмическая проблема — по существу, проблема о вычислении значений функции, заданной в некотором алфавите. Остается уточнить, что значит уметь вычислять значения функции. Это значит вычислять значения функции с помощью подходящей машины Тьюринга. Для каких же функций возможно их тьюрингово вычисление? Многочисленные исследования ученых, обширный опыт показали, что такой класс функций чрезвычайно широк. Каждая функция, для вычисления значений которой существует какой-нибудь алгоритм, оказывалась вычислимой посредством некоторой машины Тьюринга. Это дало повод Тьюрингу высказать следующую гипотезу, называемую основной гипотезой теории алгоритмов, или тезисом Тьюринга: Для нахождения значений функции, заданной в некотором алфавите, тогда и только тогда существует какой-нибудь алгоритм, когда функция является вычислимой по Тьюрингу, т. е. когда она может вычисляться на подходящей машине Тьюринга. Это означает, что строго математическое понятие вычислимой (по Тьюрингу) функции является по существу идеальной моделью взятого из опыта понятия алгоритма. Данный тезис есть не что иное, как аксиома, постулат, выдвигаемый нами, о взаимосвязях нашего опыта с той математической теорией, которую мы под этот опыт хотим подвести. Конечно же данный тезис в принципе не может быть доказан методами математики, потому что он не имеет внутриматематического характера (одна сторона в тезисе — понятие алгоритма — не является точным математическим понятием). Он выдвинут исходя из опыта, и именно опыт подтверждает его состоятельность. Точно так же, например, не могут быть доказаны и математические законы механики; они открыты Ньютоном и многократно подтверждены опытом. Впрочем, не исключается принципиальная возможность того, что тезис Тьюринга будет опровергнут. Для этого должна быть указана функция, которая вычислима с помощью какого-нибудь алгоритма, но невычислима ни на какой машине Тьюринга. Но такая возможность представляется маловероятной (в этом одно из значений гипотезы): всякий алгоритм, который будет открыт, может быть реализован на машине Тьюринга. Дополнительные косвенные доводы в подтверждение этой гипотезы будут приведены в двух последующих параграфах, где рассматриваются другие формализации интуитивного понятия алгоритма и доказывается их равносильность с понятием машины Тьюринга. Машины Тьюринга и современные электронно-вычислительные машиныИзучение машин Тьюринга и практика составления программ для них закладывают фундамент алгоритмического мышления, сущность которого состоит в том, что нужно уметь разделять тот или иной процесс вычисления или какой-либо другой деятельности на простые составляющие шаги. В машине Тьюринга расчленение (анализ) вычислительного процесса на простейшие операции доведено до предельной возможности: распознавание единичного рассмотренного вхождения символа, перемещение точки наблюдения данного ряда символов в соседнюю точку и изменение имеющейся в памяти информации. Конечно, такое мелкое дробление вычислительного процесса, реализуемого в машине Тьюринга, значительно его удлиняет. Но вместе с тем логическая структура процесса, расчлененного, образно выражаясь, до атомарного состояния, значительно упрощается и предстает в некотором стандартном виде, весьма удобном для теоретических исследований. (Именно такое расчленение на простейшие составляющие вычислительного процесса на машине Тьюринга дает еще один косвенный аргумент в пользу тезиса Тьюринга, обсуждавшегося в предыдущем пункте: всякая функция, вычисляемая с помощью какого-либо алгоритма, может быть вычислена на машине Тьюринга, потому что каждый шаг данного алгоритма можно расчленить на еще более мелкие операции, которые реализуются в машине Тьюринга.) Таким образом, понятие машины Тьюринга есть теоретический инструмент анализа алгоритмического процесса, а значит, анализа существа алгоритмического мышления. В современных ЭВМ алгоритмический процесс расчленен не на столь мелкие составляющие, как в машинах Тьюринга. Наоборот, создатели ЭВМ стремятся к известному укрупнению выполняемых машиной процедур (на этом пути, конечно, есть свои ограничения). Так, для выполнения операции сложения на машине Тьюринга составляется целая программа, а в современной ЭВМ такая операция является простейшей. Далее, машина Тьюринга обладает бесконечной внешней памятью (неограниченная в обе стороны лента, разбитая на ячейки). Но ни в одной реально существующей машине бесконечной памяти быть не может. Это говорит о том, что машины Тьюринга отображают потенциальную возможность неограниченного увеличения объема памяти современных ЭВМ. Наконец, можно провести более подробный сравнительный анализ работы современной ЭВМ и машины Тьюринга. В большинстве ЭВМ принята трехадресная система команд, обусловленная необходимостью выполнения бинарных операций, в которых участвует содержимое сразу трех ячеек памяти. Например, число из ячейки Подводя итоги, можно сказать, что современные ЭВМ есть некие реальные физические модели машин Тьюринга, огрубленные с точки зрения теории, но созданные в целях реализации конкретных вычислительных процессов. В свою очередь, понятие машины Тьюринга и теория таких машин есть теоретический фундамент и обоснование современных ЭВМ.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |