Линейные дифференциальные уравнения 1-го порядка и уравнение Бернулли
Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и её производной. Оно имеет вид
 (1)
где и — заданные функции от , непрерывные в той области, в которой требуется проинтегрировать уравнение (1).
Если , то уравнение (1) называется линейным однородным. Оно является уравнением с разделяющимися переменными и имеет общее решение
Общее решение неоднородного уравнения можно найти методом вариации произвольной постоянной, который состоит в том, что решение уравнения (1) ищется в виде
 , где  — новая неизвестная функция от  .
Пример 1. Решить уравнение .
Решение. Применим метод вариации постоянной. Рассмотрим однородное уравнение , соответствующее данному неоднородному уравнению. Это уравнение с разделяющимися переменными. Его общее решение имеет вид .
Общее решение неоднородного уравнения ищем в виде , где — неизвестная функция от . Подставляя, получаем , откуда . Итак, общее решение неоднородного уравнения будет , где — постоянная интегрирования.
Замечание. Может оказаться, что дифференциальное уравнение линейно относительно как функция от . Нормальный вид такого уравнения
Пример 2. Решить уравнение .
Решение. Данное уравнение является линейным, если рассматривать как функцию от :
Применяем метод вариации произвольной постоянной. Сначала решаем соответствующее однородное уравнение
которое является уравнением с разделяющимися переменными. Его общее решение имеет вид .
Общее решение уравнения ищем в виде , где — неизвестная функция от . Подставляя, получаем
 или 
Отсюда, интегрируя по частям, будем иметь итак,  (6) Подставляя это уравнение в , получаем общее решение исходного уравнения, а значит, и данного уравнения:
Исходное уравнение может быть проинтегрировано также следующим образом. Полагаем
 (7)
где и — неизвестные функции от , одна из которых, например , может быть выбрана произвольно.
Подставляя в , после преобразования получаем
 (8)
Определяя из условия , найдем затем из функцию , а следовательно, и решение уравнения . В качестве можно взять любое частое решение уравнения .
Пример 3. Решить задачу Коши: .
Решение. Ищем общее решение уравнения в виде ; имеем . Подставляя выражение для и в исходное уравнение, будем иметь
 или ![x(x-1)vu'+[x(x-1)v'+v]u=x^2(2x-1)]()
Функцию находим из условия . Беря любое частное решение последнего уравнения, например , и подставляя его, получаем уравнение , из которого находим функцию . Следовательно, общее решение уравнения будет
 или 
Используя начальное условие , получаем для нахождения уравнение , откуда ; так что решением поставленной задачи Коши будет функция .
Пример 4. Известно, что между силой тока и электродвижущей силой в цепи, имеющей сопротивление и самоиндукцию , существует зависимость , где и — постоянные. Если считать функцией времени , то получим линейное неоднородное уравнение для силы тока :
Найти силу тока для случая, когда и .
Решение. Имеем . Общее решение этого уравнения имеем вид . Используя начальное условие (13), получаем из , так что искомое решение будет
Отсюда видно, что при сила тока стремится к постоянному значению .
Пример 5. Дано семейство интегральных кривых линейного неоднородного уравнения .
Показать, что касательные в соответственных точках к кривым , определяемым линейным уравнением, пересекаются в одной точке (рис. 13).
 Решение. Рассмотрим касательную к какой-либо кривой в точке .Уравнение касательной в точке имеет вид
![\eta-q(x)(\xi-x)=y[1-p(x)(\xi-x)]]() , где  — текущие координаты точки касательной.
По определению, в соответственных точках является постоянным, а переменным. Беря любые две касательные к линиям в соответственных точках, для координат точки их пересечения, получаем
Отсюда видно, что все касательные к кривым в соответственных точках ( фиксировано) пересекаются в одной и той же точке
Исключая в системе аргумент , получаем уравнение геометрического места точек .
Пример 6. Найти решение уравнения , удовлетворяющее условию: ограничено при .
Решение. Общее решение данного уравнения . Любое решение уравнения, получаемое из общего решения при , будет неограниченно, так как при функция ограничена, а . Отсюда следует, что данное уравнение имеет единственное решение , ограниченное при , которое получается из общего решения при .
Уравнение Бернулли
Дифференциальное уравнение Бернулли имеет вид
 , где  (при  и  это уравнение является линейным).
С помощью замены переменной уравнение Бернулли приводится к линейному уравнению и интегрируется как линейное.
Пример 7. Решить уравнение Бернулли .
Решение. Делим обе части уравнения на :
Делаем замену переменной , откуда . После подстановки последнее уравнение обратится в линейное уравнение
 или  , общее решение которого  Отсюда получаем общий интеграл данного уравнения
 или 
Замечание. Уравнение Бернулли может быть проинтегрировано также методом вариации постоянной, как и линейное уравнение, и с помощью подстановки .
Пример 8. Решить уравнение Бернулли .
Решение. Применим метод вариации произвольной постоянной. Общее решение соответствующего однородного уравнения имеет вид . Общее решение уравнения ищем в виде , где — новая неизвестная функция. Подставляя в исходное уравнение, будем иметь
Для нахождения функции получим уравнение с разделяющимися переменными, из которого, разделяя переменные и интегрируя, найдем
Итак, общее решение исходного уравнения .
Некоторые нелинейные уравнения первого порядка с помощью удачно найденной замены переменных сводятся к линейным уравнениям или к уравнениям Бернулли.
Пример 9. Решить уравнение .
Решение. Запишем данное уравнение в виде .
Деля обе части уравнения на , получаем .
Замена приводит это уравнение к линейному , общее решение которого .
Заменяя его выражением через , получаем общий интеграл данного уравнения .
В некоторых уравнениях искомая функция может находиться под знаком интеграла. В этих случаях иногда удается путем дифференцирования свести данное уравнение к дифференциальному.
Пример 10. Решить уравнение .
Решение. Дифференцируя обе части этого уравнения по , получаем
 или 
Дифференцируя еще раз по , будем иметь линейное однородное уравнение относительно 
 или 
Разделяя переменные и интегрируя, найдем . Это решение, как легко проверить, удовлетворяет исходному уравнению.
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|