Линейная независимость функций. Определители Вронского и Грама
Пусть имеем конечную систему из функций , определенных на интервале . Функции называют линейно зависимыми на интервале , если существуют постоянные , не все равные нулю, такие, что для всех значений из этого интервала справедливо тождество
Если же это тождество выполняется только при , то функции называют линейно независимыми на интервале .
Пример 1. Показать, что система функций линейно независима на интервале .
Решение. В самом деле, равенство может выполняться для всех только при условии, что . Если же хоть одно из этих чисел не равно нулю, то в левой части равенства будем иметь многочлен степени не выше третьей, а он может обратиться в ноль не более, чем при трех значениях из данного интервала.
Пример 2. Показать, что система функций , где попарно различны, линейно независима на интервале .
Решение. Предположим обратное, т. е. что данная система функций линейно зависима на этом интервале. Тогда
 (1)
на интервале , причем, по крайней мере, одно из чисел отлично от нуля, например . Деля обе части тождества (1) на , будем иметь
Дифференцируя тождество, получаем
 (2)
Делим обе части тождества (2) на :
 (3)
Дифференцируя (3), получаем , что невозможно, так как по предположению, по условию, а .
Наше предположение о линейной зависимости данной системы функций привело к противоречию, следовательно, эта система функций линейно независима на интервале , т.е. тождество (1) будет выполняться только при .
Пример 3. Показать, что система функций , где , линейно независима на интервале .
Решение. Определим значения и , при которых будет выполняться тождество
 (4)
Разделим обе его части на :
 (5)
Подставляя в (5) значение , получаем и, значит, ; но функция не равна тождественно нулю, поэтому . Тождество (5) и, следовательно, (4) имеют место только при , т. е. данные функции линейно независимы в интервале .
Замечание. Попутно доказана линейная независимость тригонометрических функций .
Пример 4. Доказать, что функции
 (6)
линейно зависимы в интервале .
Решение. Покажем, что существуют такие числа , не все равные нулю, что в интервале справедливо тождество
 (7)
Предполагаем тождество (7) выполненным; положим, например, . Тогда получим однородную систему трех уравнений с тремя неизвестными 
 (8)
Определитель этой системы трёх уравнений с тремя неизвестными равен нулю:
Следовательно, однородная система (8) имеет ненулевые решения, т. е. существуют числа , среди которых имеется по крайней мере одно отличное от нуля. Для нахождения такой тройки чисел возьмем, например, два первых уравнения системы (8):
Из первого уравнения имеем , из второго . Полагая , получим ненулевое решение системы (8):
Покажем теперь, что при этих значениях тождество (7) будет выполняться для всех . Имеем
каково бы ни было . Следовательно, система функций (6) линейно зависима на интервале .
Замечание. Для случая двух функций можно дать более простой критерий линейной независимости. Именно, функции и будут линейно независимыми на интервале , если их отношение не равно тождественной постоянной на этом интервале; если же , то функции будут линейно зависимыми.
Пример 5. Функции и линейно независимы в интервале , так как их отношение в этом интервале.
Пример 6. Функции и линейно зависимы в интервале , так как их отношение в этом интервале (в точках разрыва функции доопределяем это отношение по непрерывности).
Пусть функций имеют производные (n–1)-го порядка. Определитель
называется определителем Вронского для этой системы функций. Определитель Вронского вообще является функцией от , определенной в некотором интервале.
Пример 7. Найти определитель Вронского для функций .
Решение. Имеем
Пример 8. Найти определитель Вронского для функций:
Решение. Имеем
так как первая и последняя строки определителя пропорциональны.
Теорема. Если система функций линейно зависима на отрезке , то ее определитель Вронского тождественно равен нулю на этом отрезке.
Так, например, система функций линейно зависима в интервале , и определитель Вронского этих функций равен нулю всюду в этом интервале (см. примеры 4 и 8).
Эта теорема дает необходимое условие линейной зависимости системы функций. Обратное утверждение неверно, т. е. определитель Вронского может тождественно обращаться в ноль и в том случае, когда данные функции образуют линейно независимую систему на некотором интервале.
Пример 9. Рассмотрим две функции:
Графики их имеют вид, указанный на рис. 25.
Эта система функций линейно независима, так как тождество выполняется только при . В самом деле, рассматривая его на отрезке , мы получаем , откуда , так как ; на отрезке же имеем , откуда , так как на этом отрезке.
Найдем определитель Вронского системы. На отрезках и :
Таким образом, определитель Вронского на отрезке тождественно равен нулю.
Пусть имеем систему функций на отрезке . Положим Определитель
называется определителем Грама системы функций .
Теорема. Для того, чтобы система функций была линейно зависимой, необходимо и достаточно, чтобы ее определитель Грама равнялся нулю.
Пример 10. Показать, что функции и линейно зависимы на отрезке .
Решение. Имеем
Вычислим определитель Грама следовательно, функции и линейно зависимы.
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|