Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Конечные автоматы | |
---|---|
Онлайн-сервисы
Нахождение НОД и НОК
Разложение числа на простые множители
Сравнения по модулю
Операции над множествами
Операции над векторами
Разложение вектора по базису. Доказательство, что векторы образуют базис
Чертёж треугольника по координатам вершин
Решение треугольника
Решение Пирамиды
Построение Пирамиды по координатам вершин
Чертёж многоугольника по координатам вершин
Решение систем методом Крамера и Матричным
Онлайн построение графика кривой 2-го порядка
Определение вида кривой или поверхности 2-го порядка по инвариантам
МНК и регрессионный анализ Онлайн + графики
Онлайн число, сумма и дата прописью
Алгоритмы JavaScript
Алгоритмы поиска
Алгоритмы сортировки
Уникальные элементы массива
Объединение, пересечение и разность массивов
НОД и НОК
Операции над матрицами
Дата прописью
Введение в анализ
Функции: понятие, определение, графики
Непрерывность функции
Исследование функции и построение графика
Теория множеств
Множества: понятие, определение, примеры
Точечные множества
Замкнутые и открытые множества
Мера множества
Группы, кольца, поля в математике
Поле комплексных чисел
Кольцо многочленов
Основная теорема алгебры и ее следствия
Математическая логика
Алгебра высказываний
Аксиоматика и логические рассуждения
Методы доказательств теорем
Алгебра высказываний и операции над ними
Формулы алгебры высказываний
Тавтологии алгебры высказываний
Логическая равносильность формул
Нормальные формы для формул высказываний
Логическое следование формул
Приложение алгебры высказываний для теорем
Дедуктивные и индуктивные умозаключения
Решение логических задач
Принцип полной дизъюнкции
Булевы функции
Множества, отношения и функции в логике
Булевы функции от одного и двух аргументов
Булевы функции от n аргументов
Системы булевых функций
Применение булевых функций к релейно-контактным схемам
Релейно-контактные схемы в ЭВМ
Практическое применение булевых функций
Теория формального
Формализованное исчисление высказываний
Полнота и другие свойства формализованного исчисления высказываний
Независимость системы аксиом формализованного исчисления высказываний
Логика предикатов
Логика предикатов
Логические операции над предикатами
Кванторные операции над предикатами
Формулы логики предикатов
Тавтологии логики предикатов
Преобразования формул и следование их предикатов
Проблемы разрешения для общезначимости и выполнимости формул
Применение логики предикатов в математике
Строение математических теорем
Аристотелева силлогистика и методы рассуждений
Принцип полной дизъюнкции в предикатной форме
Метод полной математической индукции
Необходимые и достаточные условия
Логика предикатов и алгебра множеств
Формализованное исчисление предикатов
Неформальные и формаль-ные аксиоматические теории
Неформальные аксиоматические теории
Свойства аксиоматических теорий
Формальные аксиоматические теории
Формализация теории аристотелевых силлогизмов
Свойства формализованного исчисления предикатов
Формальные теории первого порядка
Формализация математической теории
Теория алгоритмов
Интуитивное представление об алгоритмах
Машины Тьюринга и тезис
Рекурсивные функции
Нормальные алгоритмы Маркова
Разрешимость и перечислимость множеств
Неразрешимые алгоритмические проблемы
Теорема Гёделя о неполноте формальной арифметики
Математическая логика и компьютеры
Дискретная математика
Множества и отношения
Теория множеств: понятия и определения
Операции над множествами
Кортеж и декартово произведение множеств
Соответствия и бинарные отношения на множествах
Операции над соответствиями на множествах
Семейства множеств
Специальные свойства бинарных отношений
Отношения эквивалентности на множестве
Упорядоченные множества
Теорема о неподвижной точке
Мощность множества
Парадокс Рассела
Метод характеристических функций
Группы и кольца
Алгебраические структуры и операции
Группоиды, полугруппы, группы
Кольца, тела, поля
Области целостности в теории колец
Модули и линейные пространства
Подгруппы и подкольца
Теорема Лагранжа о порядке конечной группы
Гомоморфизмы групп и нормальные делители
Гомоморфизмы и изоморфизмы колец
Алгебра кватернионов
Полукольца и булевы алгебры
Полукольца: определение, аксиомы, примеры
Замкнутые полукольца
Полукольца и системы линейных уравнений
Булевы алгебры и полукольца
Решетки и полурешетки
Алгебраические системы
Алгебраические системы: модели и алгебры
Подсистемы алгебраических систем
Конгруэнции и фактор-системы
Гомоморфизмы алгебраических систем
Прямые произведения алгебраических систем
Конечные булевы алгебры
Многосортные алгебры
Теория графов
Теория графов: основные понятия и определения
Способы представления графов
Неориентированные и ориентированные деревья
Остовное дерево и алгоритм Краскала
Методы систематического обхода вершин графа
Алгоритмы поиска в глубину и ширину в графах
Задача о путях во взвешенных ориентированных графах
Изоморфизм, гомоморфизм и автоморфизм графов
Топологическая сортировка вершин графа
Элементы цикломатики в теории графов
Булева алгебра и функции
Булевы функции и булев куб
Таблицы булевых функций и булев оператор
Равенство булевых функций. Фиктивные переменные
Формулы и суперпозиции булевых функций
Дизъюнктивные и конъюнктивные нормальные формы
Построение минимальных ДНФ
Теорема Поста и классы
Критерий Поста
Схемы из функциональных элементов
Конечные автоматы и регулярные языки
Конечные автоматы и регулярные языки
Алфавит, слово, язык в программировании
Порождающие грамматики (грамматики Хомского)
Классификация грамматик и языков
Регулярные языки и регулярные выражения
Конечные автоматы
Допустимость языка конечным автоматом
Теорема Клини
Детерминизация конечных автоматов
Минимизация конечных автоматов
Лемма о разрастании для регулярных языков
Обоснование алгоритма детерминизации автоматов
Конечные автоматы с выходом
Морфизмы и конечные подстановки
Машины Тьюринга
Контекстно-свободные языки
Контекстно-свободные языки и грамматики
Приведенная форма КС-грамматики
Лемма о разрастании для КС-языков
Магазинные автоматы (автомат с магазинной памятью)
Алгоритм построения МП-автомата по КС-грамматике
Алгоритм построения КС-грамматики по МП-автомату
Алгебраические свойства КС-языков
Основное свойство суперпозиции КС-языков
Пересечение контекстно-свободных языков
Методы синтаксического анализа КС-языков
Восходящий синтаксический анализ и LR(k)-грамматики
Семантика формальных языков
Принцип индукции по неподвижной точке
Графовое представление МП-автоматов
Интегральное исчисление
Неопределённый и определённый
Неопределенный и определенный интегралы
Свойства интегралов
Интегрирование по частям
Интегрирование методом замены переменной
Интегрирование различных рациональных функций
Интегрирование различных иррациональных функций
Интегрирование различных тригонометрических функций
Определенный интеграл и его основные свойства
Необходимое и достаточное условие интегрируемости
Теоремы существования первообразной
Свойства определенных интегралов
Несобственные интегралы
Интегральное определение логарифмической функции
Приложения интегралов
Вычисление площадей плоских фигур
Площади фигур в различных координатах
Вычисление объемов тел с помощью интегралов
Объём тела вращения
Вычисление длин дуг кривых
Формулы длины дуги регулярной кривой
Кривизна плоской кривой
Площадь поверхности вращения тела
Интегралы в физике
Статические моменты и координаты центра тяжести
Теоремы Гульдина–Паппа
Вычисление моментов инерции
Другие приложения интегралов в физике
Основные интегралы
Вариационное исчисление
Примеры вариационных задач
Дифференциальное уравнение Эйлера
Функционалы, зависящие от нескольких функций
Задача о минимуме кратного интеграла
Финансовый анализ
Анализ эффективности
Критерии и показатели эффективности предприятия
Методы анализа эффективности деятельности
Факторный анализ прибыли от операционной деятельности
Анализ безубыточности предприятия
Операционный рычаг и эффект финансового рычага
Анализ и оценка состава, структуры и динамики доходов и расходов
Анализ рентабельности и резервов устойчивого роста капитала
Анализ распределения прибыли предприятия
Анализ и оценка чувствительности показателей эффективности
Анализ устойчивости
Финансовая устойчивость и долгосрочная платежеспособность
Характеристика типов финансовой устойчивости
Рыночная активность
Финансовый анализ рыночной активности
Методика анализа рыночной активности
Анализ и оценка дивидендного дохода на одну акцию
Инвестиционная деятельность
Инвестиции: экономическая сущность и классификация
Государственное регулирование инвестиционной деятельности
Источники финансовых ресурсов на капитальные вложения
Инвестиции в основные фонды
Оценка состояния основных фондов
Амортизация основных фондов
Капитальное строительство в инвестиционном процессе
Планирование инвестиций в форме капитальных вложений
Экономическая эффективность инвестиций
Финансирование капитальных вложений
Кредитование капитальных вложений
Кредитоспособность
Финансирование и кредитование затрат
Финансирование и кредитование инвестиционной деятельности потребительской кооперации
Финансирование и кредитование капитальных вложений потребительской кооперации
Инвестиционное строительное проектирование
Анализ инвестиций
Инвестиции и инвестиционная деятельность предприятия
Задачи финансового анализа инвестиций предприятия
Учет фактора времени в инвестиционной деятельности
Аннуитет и финансовая рента в инвестициях
Учет фактора инфляции при инвестировании
Оценка фактора риска инвестиционного проекта
Методы оценки эффективности инвестиций
Показатели эффективности инвестиционного проекта
Стоимость компании
Концепция построения международных стандартов финансовой отчетности (МСФО)
Экономическое содержание международных стандартов финансовой отчётности
Цели и принципы оценки стоимости акций и активов компании
Оценка акций и активов предприятия по справедливой стоимости
Методы оценки справедливой стоимости акций предприятия
Затратный подход к оценки стоимости компаний и акций
Сравнительный подход к оценки стоимости предприятий и акций
Доходный подход к оценке стоимости компании и акций
Выбор ставки дисконтирования при инвестировании в акции
Метод капитализации прибыли
Сравнение подходов к оценке стоимости компаний и пакетов акций
Форвардные контракты
Форвардный контракт и цена
Форвардная цена акции на бирже
Цена форвардного контракта инвестора
Форвардная цена акции с учетом величины дивиденда
Форвардная цена акции с учетом ставки дивиденда
Форвардная цена валюты на рынке форекс
Форвардный валютный курс и инфляция на рынке
Форвардная цена товара и спотовый рынок
Форвардная цена при различии ставок по кредитам и депозитам
Синтетический форвардный контракт на акции и валюту
Теория вероятностей
Основные понятия теории вероятностей
Зависимые и независимые случайные события
Повторные независимые испытания
Формула Бернулли
Одномерные случайные величины
Многомерные случайные величины
Функции случайных величин
Законы распределения целочисленных случайных величин
Законы распределения непрерывных случайных величин
Предельные теоремы теории вероятностей
Закон больших чисел и предельные теоремы
Вероятностные закономерности
Математическая статистика
Элементы математической статистики
Выборочный метод
Оценки параметров генеральной совокупности
Статистические гипотезы
Критерии согласия
Теоретические и эмпирические частоты
Теория очередей (СМО)
Определение системы массового обслуживания
Уравнения Колмогорова
Предельные вероятности состояний
Определение СМО с отказами
Определение СМО с ожиданием (очередью)
Аналитическая геометрия
Векторная алгебра
Метрические понятия и аксиомы геометрии
Равенство и подобие геометрических фигур
Бинарные отношения
Вектор, его направление и длина
Линейные операции над векторами
Линейная зависимость и независимость векторов
Отношение коллинеарных векторов
Проекции векторов на прямую и на плоскость
Угол между векторами
Ортогональные проекции векторов
Координата вектора на прямой и базис
Координаты вектора на плоскости и базис
Координаты вектора в пространстве и базис
Операции над векторами в координатной форме
Ортогональный и ортонормированный базисы
Cкалярное произведение векторов и его свойства
Выражение скалярного произведения через координаты векторов
Векторное произведение векторов и его свойства
Смешанное произведение векторов и его свойства
Ориентированные площади и объемы
Двойное векторное произведение и его свойства
Применение векторов в задачах на аффинные свойства фигур
Применение произведений векторов при решении геометрических задач
Применение векторной алгебры в механике
Системы координат
Прямоугольные координаты
Преобразования прямоугольных координат
Полярная система координат
Цилиндрическая система координат
Сферические координаты
Аффинные координаты
Аффинные преобразования координат
Аффинные преобразования плоскости
Примеры аффинных преобразований плоскости
Аффинные преобразования пространства
Многомерное координатное пространство
Линейные и аффинные подпространства
Скалярное произведение n-мерных векторов
Преобразования систем координат
Геометрия на плоскости
Алгебраические линии на плоскости
Общие уравнения геометрических мест точек
Алгебраические уравнения линий на плоскости
Уравнения прямой, проходящей через точку перпендикулярно вектору
Уравнения прямой, проходящей через точку коллинеарно вектору
Уравнения прямой, проходящей через две точки
Уравнения прямой с угловым коэффициентом
Взаимное расположение прямых
Примеры задач с прямыми на плоскости
Системы неравенств с двумя неизвестными
Системы линейных уравнений с двумя неизвестными
Линии 2-го порядка
Канонические уравнения линий второго порядка
Порядок приведения уравнения линии к каноническому виду
Эллипс
Гипербола
Парабола
Квадратичные неравенства с двумя неизвестными
Применение линий 1-го и 2-го порядков в задачах на экстремум функций
Инварианты линий
Классификация линий 2-го порядка по инвариантам
Приведение уравнения линии к каноническому виду по инвариантам
Геометрия в пространстве
Способы задания ГМТ в пространстве
Алгебраические уравнения поверхностей
Уравнения плоскости, проходящей через точку перпендикулярно вектору
Уравнения плоскости, компланарной двум неколлинеарным векторам
Уравнения плоскости, проходящей через три точки
Взаимное расположение плоскостей
Типовые задачи с плоскостями
Уравнения прямых в пространстве
Взаимное расположение прямых в пространстве
Типовые задачи с прямыми в пространстве
Поверхности 2-го порядка
Канонические уравнения поверхностей
Порядок приведения уравнения поверхности к каноническому виду
Поверхности второго порядка
Эллипсоиды
Гиперболоиды
Конусы
Параболоиды
Применение поверхностей 1-го и 2-го порядков в задачах на экстремум функций
Инварианты поверхностей
Линейная алгебра
Матрицы и операции
Линейные операции над матрицами
Умножение матриц
Возведение матриц в степень
Многочлены от матриц
Транспонирование и сопряжение матриц
Блочные матрицы
Произведение и сумма матриц Кронекера
Метод Гаусса приведения матрицы к ступенчатому виду
Элементарные преобразования матриц
Определители
Определители матриц и их основные свойства
Формула полного разложения определителя
Формула Лапласа полного разложения определителя
Определитель произведения матриц
Методы вычисления определителей
Ранг матрицы
Линейная зависимость и линейная независимость строк (столбцов) матрицы
Ранг матрицы и базисный минор матрицы
Методы вычисления ранга матрицы
Ранг системы столбцов (строк)
Обратная матрица
Обратные матрицы и их свойства
Ортогональные и унитарные матрицы
Способы нахождения обратной матрицы
Матричные уравнения
Односторонние обратные матрицы
Скелетное разложение матрицы
Полуобратная матрица
Псевдообратная матрица
Системы уравнений
Системы линейных алгебраических уравнений
Метод Гаусса решения систем линейных уравнений
Структура общего решения системы уравнений
Решение систем с помощью полуобратных матриц
Псевдорешения системы линейных уравнений
Функциональные матрицы
Функциональные матрицы скалярного аргумента
Производные матриц по векторному аргументу
Линейные и квадратичные формы и их преобразования
Приведение форм к каноническому виду
Закон инерции вещественных квадратичных форм
Знакоопределенность форм вещественных квадратичных
Формы и исследование функций на экстремум
Многочленные матрицы
Многочленные матрицы (лямбда-матрицы)
Операции над лямбда-матрицами
Простые преобразования многочленных матриц
Инвариантные множители многочленной матрицы
Функции от матриц
Собственные векторы и значения матрицы
Подобие числовых матриц
Характеристический многочлен матрицы
Минимальный многочлен матрицы
Теорема Гамильтона-Кэли
Жорданова форма матрицы
Приведение матрицы к жордановой форме
Многочлены от матриц
Применение многочленов от матриц
Функции от матриц
Линейные пространства
Линейные пространства: определение и примеры
Линейная зависимость и независимость n-мерных векторов
Размерность и базис линейного пространства
Преобразования координат в линейном пространстве
Изоморфизм линейных пространств
Подпространства
Подпространства линейного пространства
Пересечение и сумма подпространств
Способы описания подпространств
Нахождение дополнения и суммы подпространств
Нахождение пересечения подпространств
Линейные отображения
Линейные многообразия
Линейные отображения
Матрица линейного отображения
Ядро и образ линейного отображения
Линейные операторы
Линейные операторы (преобразования)
Инвариантные подпространства
Собственные векторы и значения оператора
Свойства собственных векторов операторов
Канонический вид линейного оператора
Методика приведения линейного преобразования к каноническому виду
Евклидовы пространства
Евклидовы пространства
Ортогональные векторы евклидова пространства
Ортогональный базис евклидова пространства
Ортонормированный базис евклидова пространства
Ортогональные дополнения в евклидовом пространстве
Задача о перпендикуляре
Матрица и определитель Грама и его свойства
Линейные преобразования евклидовых пространств
Канонический вид ортогонального оператора евклидова пространства
Сопряженные операторы евклидова пространства
Самосопряженные операторы евклидова пространства
Приведение квадратичной формы к главным осям
Унитарные пространства и их линейные преобразования
Комплексный анализ
Комплексные числа
Комплексные числа в алгебраической форме
Комплексные числа в тригонометрической и показательной формах
Множества на комплексной плоскости
Последовательности и ряды комплексных чисел
Комплексные функции
Функции комплексного переменного. Предел, непрерывность и производная
Элементарные функции комплексного переменного
Дифференцирование функций комплексного переменного
Аналитические функции и их свойства
Конформные отображения
Функциональные ряды в комплексной области
и их свойства Интегрирование функций комплексного переменного
Функциональные ряды и последовательности
Степенные ряды и их свойства
Разложение функций в степенные ряды
Нули аналитических функций
Ряд Лорана и разложение функций по целым степеням
Особые точки, Вычеты
Изолированные особые точки функций и полюсы
Вычеты и их применение
Вычисление интегралов с помощью вычетов
Вычеты и расположение нулей многочлена
Операционное исчисление
Дифференциальные уравнения
ДУ первого порядка
Основные понятия и определения ДУ
Метод изоклин для ДУ 1-го порядка
Метод последовательных приближений
ДУ с разделяющимися переменными
Однородные ДУ
Линейные ДУ 1-го порядка
Дифференциальное уравнение Бернулли
ДУ в полных дифференциалах
Интегрирующий множитель
ДУ, не разрешенные относительно производной
Дифференциальное уравнение Риккати
Составление ДУ семейств линий
Задачи на траектории
Особые решения ДУ
ДУ высших порядков
Понятия и определения ДУ высших порядков
ДУ, допускающие понижение порядка
Линейная независимость функций
Определители Вронского и Грама
Однородные и неоднородные дифференциальные уравнения
Задача Коши и Уравнение Эйлера
Линейные ДУ с переменными коэффициентами
Метод Лагранжа решения ДУ
Краевые задачи для ДУ высших порядков
Разложение решения ДУ в степенной ряд
Разложение решения ДУ в обобщенный степенной ряд
Нахождение периодических решений ДУ
Асимптотическое интегрирование ДУ
Системы ДУ
Системы ДУ: понятия и определения
Сведение системы ДУ к одному уравнению
Нахождение интегрируемых комбинаций
Интегрирование однородных линейных систем ДУ
Методы интегрирования неоднородных систем ДУ
Преобразование Лапласа и решение ДУ и систем
Теория устойчивости
Численные методы
Методы алгебры
Численные методы линейной алгебры
Численные методы решения СЛАУ
Итерационный метод Шульца обратной матрицы
Методы решения задач о собственных значениях и векторах матрицы
Методы решения нелинейных уравнений
Методы решения систем нелинейных уравнений
Методы теории приближений
Методы приближения сеточных функций
Методы функциональной интерполяции
Методы интегрально-дифференциальной интерполяции
Методы интегрального сглаживания
Методы интерполяции и сглаживания сплайнами
Методы численного дифференцирования и интегрирования
Методы численного дифференцирования
Методы численного интегрирования
Методы решения обыкновенных ДУ
Численные методы решения задачи Коши
Разностные схемы для решения задачи Коши
Составные схемы для решения задачи Коши
Экстраполяционные методы решения задачи Коши
Непрерывно-дискретные методы решения задачи Коши
Численные методы решения краевых задач
Методы решения ДУ в частных производных
Численные методы решения уравнений математической физики с двумя переменными
Принципы построения разностных схем для уравнений в частных производных
Разностные схемы решения уравнений в частных производных 1-го порядка
Разностные схемы решения уравнений в частных производных 2-го порядка
Численные методы решения уравнений в частных производных
Численные методы решения уравнений математической физики с тремя переменными
|
Конечные автоматы в языках программированияОдной из наиболее важных задач, решаемых в теории формальных языков, является следующая. Пусть задана некоторая порождающая грамматика Неформально автомат можно описать как устройство, состоящее из блока управления, входной ленты, головки автомата и блока внутренней памяти автомата (рис. 7.2). На ленте, которая предполагается полубесконечной (не ограниченной справа) и разделена на ячейки, записываются цепочки во входном алфавите (обозначаемом далее Автомат, читая входную цепочку, работает по шагам (или по тактам). Пусть в некоторый момент времени автомат обозревает какую-то ячейку ленты, а блок управления находится в некотором состоянии Вводят понятие конфигурации автомата: она определяется состоянием блока управления, содержимым обозреваемой ячейки и содержимым внутренней памяти*. Автомат в общем случае не является детерминированным устройством, т.е. для него из заданной конфигурации возможны переходы в несколько различных конфигураций. Правила, согласно которым автомат переходит из одной конфигурации в другую, составляют в совокупности его систему команд автомата. Каждая команда разрешает переход из некоторой конфигурации в какую-то другую конфигурацию. Это напоминает игру, например шахматную, когда из текущей позиции на доске можно, сделав ход, получить новую позицию — одну из множества всех позиций, в которые можно попасть из текущей позиции, сделав ход согласно правилам игры. В данном случае правила игры аналогичны системе команд, а позиция на доске — конфигурации автомата. *Для автоматов конкретных классов понятие конфигурации несколько модифицируется: так, например, в конфигурацию входит не только символ обозреваемой ячейки, но и вся подцепочка входной цепочки, включающая символ обозреваемой ячейки и все символы справа от него. Автоматы классифицируются в соответствии со структурой своей внутренней памяти, с режимом работы с лентой (только чтение или чтение/запись), а также с типом движения головки по ленте (одностороннее, двусторонее, число ячеек, на которые за один такт можно сдвинуть головку). Множество команд предполагается конечным, т.е. автомат, как и грамматика, имеет конечное описание. Представим теперь следующую ситуацию. Пусть на входной ленте автомата записана некоторая цепочка В начальный момент времени блок управления находится в начальном состоянии, головка обозревает первую (крайнюю левую) ячейку ленты, в которой записан первый символ входной цепочки Оказывается, что каждому классу грамматик соответствует свой класс автоматов, причем для каждой грамматики соответствующего класса может быть построен автомат, который допускает цепочки, порождаемые данной грамматикой, и только их. Образно говоря, в каждом классе языков возникает пара "писатель — читатель": грамматика, как "писатель", порождает определенное множество "текстов" (цепочек в заданном алфавите), а "читатель" (автомат) проверяет "правильность" этих текстов, допуская те и только те цепочки, которая порождает "его" грамматика. В качестве "писателя" может выступать программист, пишущий тексты компьютерных программ, а в качестве "читателя" — системные программы, обеспечивающие проверку правильности написанного текста (соответствия его грамматике того или иного языка программирования). Тем самым допускающий автомат становится прообразом некоторого распознающего алгоритма, решающего проблему принадлежности в том или ином классе грамматик. Заметим, однако, что автомат сам по себе еще не является таким алгоритмом и что оказывается, например, в классе грамматик типа 0 в общем случае построить алгоритм для решения проблемы принадлежности невозможно, хотя автоматы, соответствующие грамматикам типа 0, существуют (так называемые машины Тьюринга). Некоторые вопросы, связанные с переходом от анализирующей модели языка к алгоритму, который решает проблему принадлежности для грамматики, порождающей этот язык, рассмотрены в последующих лекциях. Мы начинаем с простейших анализирующих моделей — конечных автоматов. Конечные автоматы — это анализирующие модели для регулярных языков. Конечный автомат не имеет внутренней памяти, головка движется по ленте только вправо — на одну ячейку за такт. С ленты можно только читать. Кроме того, автомат может переходить "спонтанно" из одного состояния в другое, не читая ленту и не продвигая головку. Такой такт можно рассматривать как переход из состояния в состояние по пустой цепочке. Его называют λ-тактом. Итак, из каждого состояния автомат может переходить в другое состояние, читая тот или иной символ входной цепочки, или делать переход по пустой цепочке, причем принимается по определению, что эти два типа переходов исключают друг друга. Поведение конечного автомата определяется его системой команд, в которой каждая команда задается записью (7.4) что означает: "из состояния При этом по определению принимается, что переход по пустой цепочке и переход по входному символу исключают друг друга. То есть для любой пары Конфигурация конечного автомата определяется как упорядоченная пара Чтобы дать математическое определение конечного автомата, нужно заметить, что он, в свете только что изложенного неформального описания, допускает естественную интерпретацию в терминах размеченных ориентированных графов. Будем рассматривать состояния блока управления конечного автомата как вершины ориентированного графа, множество дуг которого определяется системой команд следующим образом: дуга ведет из состояния Метка дуги Пример 7.7. Зададим конечный автомат с входным алфавитом По этой системе команд построим размеченный ориентированный граф, изображенный на рис. 7.3. Среди состояний автомата выделены начальное состояние Этой последовательности отвечает путь в ориентированном графе, ведущий из вершины (под каждой стрелкой подписана буква, принадлежащая метке соответствующей дуги и являющаяся очередной буквой читаемой входной цепочки). Заметим, что, например, находясь в состоянии Эта ситуация демонстрирует как раз недетерминированность конечного автомата как распознающего устройства: система команд ("правила игры") позволяет автомату допустить цепочку Обозначение пустой цепочки Итак, математическое определение конечного автомата формулируется следующим образом. Конечный автомат — это ориентированный граф, размеченный над полукольцом На функцию разметки при этом накладываются следующие ограничения: метка каждой дуги есть либо язык Вершины графа называют обычно в этом случае состояниями конечного автомата, начальную вершину — начальным состоянием, а заключительную вершину — заключительным состоянием конечного автомата. Замечание 7.5. Если для какой-то дуги На рис. 7.5 изображен конечный автомат, для которого алфавит Конечный автомат, таким образом, может быть задан как пятерка: где Алфавит Замечание 7.6. Конечный автомат определен как ориентированный граф, размеченный над полукольцом регулярных языков, но метка дуги задается не как произвольный регулярный язык, а как язык, состоящий из одной пустой цепочки, либо язык, являющийся подмножеством букв входного алфавита. Это ни в коей мере не противоречит основному определению размеченного ориентированного графа, ибо совершенно не обязательно, чтобы область значения функции разметки совпадала с носителем полукольца. Чисто формально, конечно, можно обобщить определение конечного автомата и допустить в качестве меток дуг произвольные регулярные языки, но, как можно показать, это обобщение не является принципиальным, и такое определение конечного автомата сводится к данному выше определению (см. задачи в конце этой главы). Немаловажно и то, что приведенное формальное определение конечного автомата и задание меток дуг как регулярных языков специального вида согласуются с интуитивным представлением об автомате как об устройстве, которое "побуквенно" читает входные цепочки, переходя из одного состояния в другое. Требование, чтобы такое устройство за один такт анализировало ("обозревало") любое, сколь угодно сложное регулярное выражение, не отвечает нашей "вычислительной" интуиции, в соответствии с которой за один такт может быть произведена только простая операция, каковой и является "реакция" автомата на обозреваемый одиночный символ или на пустую цепочку. Если Если же метка дуги Для конечного автомата удобно ввести в рассмотрение функцию переходов, определив ее как отображение т.е. значение функции переходов на упорядоченной паре (состояние, входной символ или пустая цепочка) есть множество всех состояний, в которые из данного состояния возможен переход по данному входному символу или пустой цепочке. В частности, это может быть пустое множество. На рис. 7.5 Понятие функции переходов конечного автомата позволяет дать и математическую интерпретацию системы команд. С этой точки зрения система команд есть просто способ представления конечной функции, а именно функции переходов. Система команд есть конечное множество команд вида Содержательная интерпретация команды была приведена выше. Стрелка Система команд автомата, изображенного на рис. 7.5, приведена ниже: Используя функцию переходов, конечный автомат можно задавать как упорядоченную пятерку: где Конечный автомат называют полностью определенным, если из каждого его состояния по каждому входному символу возможен переход в некоторое состояние, т.е. Заметим, что в полностью определенном конечном автомате, вообще говоря, могут существовать и переходы по пустой цепочке. Конечный автомат называется детерминированным, если в нем нет дуг с меткой Конечный автомат называется квазидетерминированным, если в нем нет дуг с меткой Замечание 7.7. Для детерминированного конечного автомата значением функции переходов для любой пары (состояние, входной символ) является одноэлементное подмножество множества состояний. Поэтому естественно понимать функцию переходов детерминированного конечного автомата не как отображение множества Согласно общему определению метки пути в размеченном ориентированном графе, метка пути в конечном автомате есть соединение* меток входящих в этот путь дуг (в порядке их прохождения). Таким образом, метка любого пути конечной длины в конечном автомате есть регулярный язык. Отметим, что мы, изучая размеченные ориентированные графы, предполагаем, что рассматриваются только пути конечной длины. Так, для автомата, изображенного на рис. 7.5, метка пути что означает, что эта метка есть множество цепочек *Умножением полукольца Метку пути Если цепочка Стоимость прохождения из состояния *Здесь объединение понимается как бесконечная сумма замкнутого полукольца Говоря об элементе В частности, язык (7.5) где Таким образом, язык конечного автомата есть объединение тех элементов матрицы стоимостей автомата, которые находятся в строке, соответствующей начальному состоянию Замечание 7.8. Необходимо обратить внимание на одну очень важную вещь. В конечном автомате метка произвольного пути конечной длины есть регулярный язык, поскольку он вычисляется как соединение конечного семейства регулярных языков. Но стоимость прохождения между заданной парой вершин априори не является регулярным языком, так как множество путей, ведущих из одной вершины в другую, может быть бесконечным (каждый путь имеет конечную длину, но множество всех таких путей может оказаться бесконечным, содержать пути сколь угодно большой длины — простейший пример дает петля, по которой можно пройти сколько угодно раз). Поэтому объединение при определении стоимости прохождения между парой состояний конечного автомата мы можем сейчас рассматривать только как операцию замкнутого полукольца всех языков в данном алфавите, а именно операцию вычисления точной верхней грани ("бесконечная сумма" в замкнутом полукольце). Но коль скоро элементы матрицы стоимостей уже вычислены, их объединение (в формуле (7.5)), дающее язык конечного автомата, разумеется, конечно. Позже будет доказано, что на самом деле все стоимости в конечном автомате также регулярны.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |