Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Формальные аксиоматические теории | |
---|---|
Онлайн-сервисы
Нахождение НОД и НОК
Разложение числа на простые множители
Сравнения по модулю
Операции над множествами
Операции над векторами
Разложение вектора по базису. Доказательство, что векторы образуют базис
Чертёж треугольника по координатам вершин
Решение треугольника
Решение Пирамиды
Построение Пирамиды по координатам вершин
Чертёж многоугольника по координатам вершин
Решение систем методом Крамера и Матричным
Онлайн построение графика кривой 2-го порядка
Определение вида кривой или поверхности 2-го порядка по инвариантам
МНК и регрессионный анализ Онлайн + графики
Онлайн число, сумма и дата прописью
Алгоритмы JavaScript
Алгоритмы поиска
Алгоритмы сортировки
Уникальные элементы массива
Объединение, пересечение и разность массивов
НОД и НОК
Операции над матрицами
Дата прописью
Введение в анализ
Функции: понятие, определение, графики
Непрерывность функции
Исследование функции и построение графика
Теория множеств
Множества: понятие, определение, примеры
Точечные множества
Замкнутые и открытые множества
Мера множества
Группы, кольца, поля в математике
Поле комплексных чисел
Кольцо многочленов
Основная теорема алгебры и ее следствия
Математическая логика
Алгебра высказываний
Аксиоматика и логические рассуждения
Методы доказательств теорем
Алгебра высказываний и операции над ними
Формулы алгебры высказываний
Тавтологии алгебры высказываний
Логическая равносильность формул
Нормальные формы для формул высказываний
Логическое следование формул
Приложение алгебры высказываний для теорем
Дедуктивные и индуктивные умозаключения
Решение логических задач
Принцип полной дизъюнкции
Булевы функции
Множества, отношения и функции в логике
Булевы функции от одного и двух аргументов
Булевы функции от n аргументов
Системы булевых функций
Применение булевых функций к релейно-контактным схемам
Релейно-контактные схемы в ЭВМ
Практическое применение булевых функций
Теория формального
Формализованное исчисление высказываний
Полнота и другие свойства формализованного исчисления высказываний
Независимость системы аксиом формализованного исчисления высказываний
Логика предикатов
Логика предикатов
Логические операции над предикатами
Кванторные операции над предикатами
Формулы логики предикатов
Тавтологии логики предикатов
Преобразования формул и следование их предикатов
Проблемы разрешения для общезначимости и выполнимости формул
Применение логики предикатов в математике
Строение математических теорем
Аристотелева силлогистика и методы рассуждений
Принцип полной дизъюнкции в предикатной форме
Метод полной математической индукции
Необходимые и достаточные условия
Логика предикатов и алгебра множеств
Формализованное исчисление предикатов
Неформальные и формаль-ные аксиоматические теории
Неформальные аксиоматические теории
Свойства аксиоматических теорий
Формальные аксиоматические теории
Формализация теории аристотелевых силлогизмов
Свойства формализованного исчисления предикатов
Формальные теории первого порядка
Формализация математической теории
Теория алгоритмов
Интуитивное представление об алгоритмах
Машины Тьюринга и тезис
Рекурсивные функции
Нормальные алгоритмы Маркова
Разрешимость и перечислимость множеств
Неразрешимые алгоритмические проблемы
Теорема Гёделя о неполноте формальной арифметики
Математическая логика и компьютеры
Дискретная математика
Множества и отношения
Теория множеств: понятия и определения
Операции над множествами
Кортеж и декартово произведение множеств
Соответствия и бинарные отношения на множествах
Операции над соответствиями на множествах
Семейства множеств
Специальные свойства бинарных отношений
Отношения эквивалентности на множестве
Упорядоченные множества
Теорема о неподвижной точке
Мощность множества
Парадокс Рассела
Метод характеристических функций
Группы и кольца
Алгебраические структуры и операции
Группоиды, полугруппы, группы
Кольца, тела, поля
Области целостности в теории колец
Модули и линейные пространства
Подгруппы и подкольца
Теорема Лагранжа о порядке конечной группы
Гомоморфизмы групп и нормальные делители
Гомоморфизмы и изоморфизмы колец
Алгебра кватернионов
Полукольца и булевы алгебры
Полукольца: определение, аксиомы, примеры
Замкнутые полукольца
Полукольца и системы линейных уравнений
Булевы алгебры и полукольца
Решетки и полурешетки
Алгебраические системы
Алгебраические системы: модели и алгебры
Подсистемы алгебраических систем
Конгруэнции и фактор-системы
Гомоморфизмы алгебраических систем
Прямые произведения алгебраических систем
Конечные булевы алгебры
Многосортные алгебры
Теория графов
Теория графов: основные понятия и определения
Способы представления графов
Неориентированные и ориентированные деревья
Остовное дерево и алгоритм Краскала
Методы систематического обхода вершин графа
Алгоритмы поиска в глубину и ширину в графах
Задача о путях во взвешенных ориентированных графах
Изоморфизм, гомоморфизм и автоморфизм графов
Топологическая сортировка вершин графа
Элементы цикломатики в теории графов
Булева алгебра и функции
Булевы функции и булев куб
Таблицы булевых функций и булев оператор
Равенство булевых функций. Фиктивные переменные
Формулы и суперпозиции булевых функций
Дизъюнктивные и конъюнктивные нормальные формы
Построение минимальных ДНФ
Теорема Поста и классы
Критерий Поста
Схемы из функциональных элементов
Конечные автоматы и регулярные языки
Конечные автоматы и регулярные языки
Алфавит, слово, язык в программировании
Порождающие грамматики (грамматики Хомского)
Классификация грамматик и языков
Регулярные языки и регулярные выражения
Конечные автоматы
Допустимость языка конечным автоматом
Теорема Клини
Детерминизация конечных автоматов
Минимизация конечных автоматов
Лемма о разрастании для регулярных языков
Обоснование алгоритма детерминизации автоматов
Конечные автоматы с выходом
Морфизмы и конечные подстановки
Машины Тьюринга
Контекстно-свободные языки
Контекстно-свободные языки и грамматики
Приведенная форма КС-грамматики
Лемма о разрастании для КС-языков
Магазинные автоматы (автомат с магазинной памятью)
Алгоритм построения МП-автомата по КС-грамматике
Алгоритм построения КС-грамматики по МП-автомату
Алгебраические свойства КС-языков
Основное свойство суперпозиции КС-языков
Пересечение контекстно-свободных языков
Методы синтаксического анализа КС-языков
Восходящий синтаксический анализ и LR(k)-грамматики
Семантика формальных языков
Принцип индукции по неподвижной точке
Графовое представление МП-автоматов
Интегральное исчисление
Неопределённый и определённый
Неопределенный и определенный интегралы
Свойства интегралов
Интегрирование по частям
Интегрирование методом замены переменной
Интегрирование различных рациональных функций
Интегрирование различных иррациональных функций
Интегрирование различных тригонометрических функций
Определенный интеграл и его основные свойства
Необходимое и достаточное условие интегрируемости
Теоремы существования первообразной
Свойства определенных интегралов
Несобственные интегралы
Интегральное определение логарифмической функции
Приложения интегралов
Вычисление площадей плоских фигур
Площади фигур в различных координатах
Вычисление объемов тел с помощью интегралов
Объём тела вращения
Вычисление длин дуг кривых
Формулы длины дуги регулярной кривой
Кривизна плоской кривой
Площадь поверхности вращения тела
Интегралы в физике
Статические моменты и координаты центра тяжести
Теоремы Гульдина–Паппа
Вычисление моментов инерции
Другие приложения интегралов в физике
Основные интегралы
Вариационное исчисление
Примеры вариационных задач
Дифференциальное уравнение Эйлера
Функционалы, зависящие от нескольких функций
Задача о минимуме кратного интеграла
Финансовый анализ
Анализ эффективности
Критерии и показатели эффективности предприятия
Методы анализа эффективности деятельности
Факторный анализ прибыли от операционной деятельности
Анализ безубыточности предприятия
Операционный рычаг и эффект финансового рычага
Анализ и оценка состава, структуры и динамики доходов и расходов
Анализ рентабельности и резервов устойчивого роста капитала
Анализ распределения прибыли предприятия
Анализ и оценка чувствительности показателей эффективности
Анализ устойчивости
Финансовая устойчивость и долгосрочная платежеспособность
Характеристика типов финансовой устойчивости
Рыночная активность
Финансовый анализ рыночной активности
Методика анализа рыночной активности
Анализ и оценка дивидендного дохода на одну акцию
Инвестиционная деятельность
Инвестиции: экономическая сущность и классификация
Государственное регулирование инвестиционной деятельности
Источники финансовых ресурсов на капитальные вложения
Инвестиции в основные фонды
Оценка состояния основных фондов
Амортизация основных фондов
Капитальное строительство в инвестиционном процессе
Планирование инвестиций в форме капитальных вложений
Экономическая эффективность инвестиций
Финансирование капитальных вложений
Кредитование капитальных вложений
Кредитоспособность
Финансирование и кредитование затрат
Финансирование и кредитование инвестиционной деятельности потребительской кооперации
Финансирование и кредитование капитальных вложений потребительской кооперации
Инвестиционное строительное проектирование
Анализ инвестиций
Инвестиции и инвестиционная деятельность предприятия
Задачи финансового анализа инвестиций предприятия
Учет фактора времени в инвестиционной деятельности
Аннуитет и финансовая рента в инвестициях
Учет фактора инфляции при инвестировании
Оценка фактора риска инвестиционного проекта
Методы оценки эффективности инвестиций
Показатели эффективности инвестиционного проекта
Стоимость компании
Концепция построения международных стандартов финансовой отчетности (МСФО)
Экономическое содержание международных стандартов финансовой отчётности
Цели и принципы оценки стоимости акций и активов компании
Оценка акций и активов предприятия по справедливой стоимости
Методы оценки справедливой стоимости акций предприятия
Затратный подход к оценки стоимости компаний и акций
Сравнительный подход к оценки стоимости предприятий и акций
Доходный подход к оценке стоимости компании и акций
Выбор ставки дисконтирования при инвестировании в акции
Метод капитализации прибыли
Сравнение подходов к оценке стоимости компаний и пакетов акций
Форвардные контракты
Форвардный контракт и цена
Форвардная цена акции на бирже
Цена форвардного контракта инвестора
Форвардная цена акции с учетом величины дивиденда
Форвардная цена акции с учетом ставки дивиденда
Форвардная цена валюты на рынке форекс
Форвардный валютный курс и инфляция на рынке
Форвардная цена товара и спотовый рынок
Форвардная цена при различии ставок по кредитам и депозитам
Синтетический форвардный контракт на акции и валюту
Теория вероятностей
Основные понятия теории вероятностей
Зависимые и независимые случайные события
Повторные независимые испытания
Формула Бернулли
Одномерные случайные величины
Многомерные случайные величины
Функции случайных величин
Законы распределения целочисленных случайных величин
Законы распределения непрерывных случайных величин
Предельные теоремы теории вероятностей
Закон больших чисел и предельные теоремы
Вероятностные закономерности
Математическая статистика
Элементы математической статистики
Выборочный метод
Оценки параметров генеральной совокупности
Статистические гипотезы
Критерии согласия
Теоретические и эмпирические частоты
Теория очередей (СМО)
Определение системы массового обслуживания
Уравнения Колмогорова
Предельные вероятности состояний
Определение СМО с отказами
Определение СМО с ожиданием (очередью)
Аналитическая геометрия
Векторная алгебра
Метрические понятия и аксиомы геометрии
Равенство и подобие геометрических фигур
Бинарные отношения
Вектор, его направление и длина
Линейные операции над векторами
Линейная зависимость и независимость векторов
Отношение коллинеарных векторов
Проекции векторов на прямую и на плоскость
Угол между векторами
Ортогональные проекции векторов
Координата вектора на прямой и базис
Координаты вектора на плоскости и базис
Координаты вектора в пространстве и базис
Операции над векторами в координатной форме
Ортогональный и ортонормированный базисы
Cкалярное произведение векторов и его свойства
Выражение скалярного произведения через координаты векторов
Векторное произведение векторов и его свойства
Смешанное произведение векторов и его свойства
Ориентированные площади и объемы
Двойное векторное произведение и его свойства
Применение векторов в задачах на аффинные свойства фигур
Применение произведений векторов при решении геометрических задач
Применение векторной алгебры в механике
Системы координат
Прямоугольные координаты
Преобразования прямоугольных координат
Полярная система координат
Цилиндрическая система координат
Сферические координаты
Аффинные координаты
Аффинные преобразования координат
Аффинные преобразования плоскости
Примеры аффинных преобразований плоскости
Аффинные преобразования пространства
Многомерное координатное пространство
Линейные и аффинные подпространства
Скалярное произведение n-мерных векторов
Преобразования систем координат
Геометрия на плоскости
Алгебраические линии на плоскости
Общие уравнения геометрических мест точек
Алгебраические уравнения линий на плоскости
Уравнения прямой, проходящей через точку перпендикулярно вектору
Уравнения прямой, проходящей через точку коллинеарно вектору
Уравнения прямой, проходящей через две точки
Уравнения прямой с угловым коэффициентом
Взаимное расположение прямых
Примеры задач с прямыми на плоскости
Системы неравенств с двумя неизвестными
Системы линейных уравнений с двумя неизвестными
Линии 2-го порядка
Канонические уравнения линий второго порядка
Порядок приведения уравнения линии к каноническому виду
Эллипс
Гипербола
Парабола
Квадратичные неравенства с двумя неизвестными
Применение линий 1-го и 2-го порядков в задачах на экстремум функций
Инварианты линий
Классификация линий 2-го порядка по инвариантам
Приведение уравнения линии к каноническому виду по инвариантам
Геометрия в пространстве
Способы задания ГМТ в пространстве
Алгебраические уравнения поверхностей
Уравнения плоскости, проходящей через точку перпендикулярно вектору
Уравнения плоскости, компланарной двум неколлинеарным векторам
Уравнения плоскости, проходящей через три точки
Взаимное расположение плоскостей
Типовые задачи с плоскостями
Уравнения прямых в пространстве
Взаимное расположение прямых в пространстве
Типовые задачи с прямыми в пространстве
Поверхности 2-го порядка
Канонические уравнения поверхностей
Порядок приведения уравнения поверхности к каноническому виду
Поверхности второго порядка
Эллипсоиды
Гиперболоиды
Конусы
Параболоиды
Применение поверхностей 1-го и 2-го порядков в задачах на экстремум функций
Инварианты поверхностей
Линейная алгебра
Матрицы и операции
Линейные операции над матрицами
Умножение матриц
Возведение матриц в степень
Многочлены от матриц
Транспонирование и сопряжение матриц
Блочные матрицы
Произведение и сумма матриц Кронекера
Метод Гаусса приведения матрицы к ступенчатому виду
Элементарные преобразования матриц
Определители
Определители матриц и их основные свойства
Формула полного разложения определителя
Формула Лапласа полного разложения определителя
Определитель произведения матриц
Методы вычисления определителей
Ранг матрицы
Линейная зависимость и линейная независимость строк (столбцов) матрицы
Ранг матрицы и базисный минор матрицы
Методы вычисления ранга матрицы
Ранг системы столбцов (строк)
Обратная матрица
Обратные матрицы и их свойства
Ортогональные и унитарные матрицы
Способы нахождения обратной матрицы
Матричные уравнения
Односторонние обратные матрицы
Скелетное разложение матрицы
Полуобратная матрица
Псевдообратная матрица
Системы уравнений
Системы линейных алгебраических уравнений
Метод Гаусса решения систем линейных уравнений
Структура общего решения системы уравнений
Решение систем с помощью полуобратных матриц
Псевдорешения системы линейных уравнений
Функциональные матрицы
Функциональные матрицы скалярного аргумента
Производные матриц по векторному аргументу
Линейные и квадратичные формы и их преобразования
Приведение форм к каноническому виду
Закон инерции вещественных квадратичных форм
Знакоопределенность форм вещественных квадратичных
Формы и исследование функций на экстремум
Многочленные матрицы
Многочленные матрицы (лямбда-матрицы)
Операции над лямбда-матрицами
Простые преобразования многочленных матриц
Инвариантные множители многочленной матрицы
Функции от матриц
Собственные векторы и значения матрицы
Подобие числовых матриц
Характеристический многочлен матрицы
Минимальный многочлен матрицы
Теорема Гамильтона-Кэли
Жорданова форма матрицы
Приведение матрицы к жордановой форме
Многочлены от матриц
Применение многочленов от матриц
Функции от матриц
Линейные пространства
Линейные пространства: определение и примеры
Линейная зависимость и независимость n-мерных векторов
Размерность и базис линейного пространства
Преобразования координат в линейном пространстве
Изоморфизм линейных пространств
Подпространства
Подпространства линейного пространства
Пересечение и сумма подпространств
Способы описания подпространств
Нахождение дополнения и суммы подпространств
Нахождение пересечения подпространств
Линейные отображения
Линейные многообразия
Линейные отображения
Матрица линейного отображения
Ядро и образ линейного отображения
Линейные операторы
Линейные операторы (преобразования)
Инвариантные подпространства
Собственные векторы и значения оператора
Свойства собственных векторов операторов
Канонический вид линейного оператора
Методика приведения линейного преобразования к каноническому виду
Евклидовы пространства
Евклидовы пространства
Ортогональные векторы евклидова пространства
Ортогональный базис евклидова пространства
Ортонормированный базис евклидова пространства
Ортогональные дополнения в евклидовом пространстве
Задача о перпендикуляре
Матрица и определитель Грама и его свойства
Линейные преобразования евклидовых пространств
Канонический вид ортогонального оператора евклидова пространства
Сопряженные операторы евклидова пространства
Самосопряженные операторы евклидова пространства
Приведение квадратичной формы к главным осям
Унитарные пространства и их линейные преобразования
Комплексный анализ
Комплексные числа
Комплексные числа в алгебраической форме
Комплексные числа в тригонометрической и показательной формах
Множества на комплексной плоскости
Последовательности и ряды комплексных чисел
Комплексные функции
Функции комплексного переменного. Предел, непрерывность и производная
Элементарные функции комплексного переменного
Дифференцирование функций комплексного переменного
Аналитические функции и их свойства
Конформные отображения
Функциональные ряды в комплексной области
и их свойства Интегрирование функций комплексного переменного
Функциональные ряды и последовательности
Степенные ряды и их свойства
Разложение функций в степенные ряды
Нули аналитических функций
Ряд Лорана и разложение функций по целым степеням
Особые точки, Вычеты
Изолированные особые точки функций и полюсы
Вычеты и их применение
Вычисление интегралов с помощью вычетов
Вычеты и расположение нулей многочлена
Операционное исчисление
Дифференциальные уравнения
ДУ первого порядка
Основные понятия и определения ДУ
Метод изоклин для ДУ 1-го порядка
Метод последовательных приближений
ДУ с разделяющимися переменными
Однородные ДУ
Линейные ДУ 1-го порядка
Дифференциальное уравнение Бернулли
ДУ в полных дифференциалах
Интегрирующий множитель
ДУ, не разрешенные относительно производной
Дифференциальное уравнение Риккати
Составление ДУ семейств линий
Задачи на траектории
Особые решения ДУ
ДУ высших порядков
Понятия и определения ДУ высших порядков
ДУ, допускающие понижение порядка
Линейная независимость функций
Определители Вронского и Грама
Однородные и неоднородные дифференциальные уравнения
Задача Коши и Уравнение Эйлера
Линейные ДУ с переменными коэффициентами
Метод Лагранжа решения ДУ
Краевые задачи для ДУ высших порядков
Разложение решения ДУ в степенной ряд
Разложение решения ДУ в обобщенный степенной ряд
Нахождение периодических решений ДУ
Асимптотическое интегрирование ДУ
Системы ДУ
Системы ДУ: понятия и определения
Сведение системы ДУ к одному уравнению
Нахождение интегрируемых комбинаций
Интегрирование однородных линейных систем ДУ
Методы интегрирования неоднородных систем ДУ
Преобразование Лапласа и решение ДУ и систем
Теория устойчивости
Численные методы
Методы алгебры
Численные методы линейной алгебры
Численные методы решения СЛАУ
Итерационный метод Шульца обратной матрицы
Методы решения задач о собственных значениях и векторах матрицы
Методы решения нелинейных уравнений
Методы решения систем нелинейных уравнений
Методы теории приближений
Методы приближения сеточных функций
Методы функциональной интерполяции
Методы интегрально-дифференциальной интерполяции
Методы интегрального сглаживания
Методы интерполяции и сглаживания сплайнами
Методы численного дифференцирования и интегрирования
Методы численного дифференцирования
Методы численного интегрирования
Методы решения обыкновенных ДУ
Численные методы решения задачи Коши
Разностные схемы для решения задачи Коши
Составные схемы для решения задачи Коши
Экстраполяционные методы решения задачи Коши
Непрерывно-дискретные методы решения задачи Коши
Численные методы решения краевых задач
Методы решения ДУ в частных производных
Численные методы решения уравнений математической физики с двумя переменными
Принципы построения разностных схем для уравнений в частных производных
Разностные схемы решения уравнений в частных производных 1-го порядка
Разностные схемы решения уравнений в частных производных 2-го порядка
Численные методы решения уравнений в частных производных
Численные методы решения уравнений математической физики с тремя переменными
|
Формальные аксиоматические теорииОбоснование формализацииВспоминая рассмотренные ранее аксиоматические теории (натуральных чисел, геометрии, множеств) и еще раз анализируя их, мы должны отметить, что при всей их строгости они все же не являются вполне абстрактными, или, как говорят, формальными. Все они абстрактны в том смысле, что предметами их изучения могут быть объекты абсолютно произвольной природы (числа, точки, прямые, множества и т.д.). И это несомненно значительный шаг на пути формализации математической теории. Но возможен и следующий шаг на пути абстрагирования от привычного нам неформального (или, как говорят, содержательного) понимания компонентов математической теории. Имея дело с формальными (произвольной природы) объектами, мы применяли к ним не формальную, а содержательную логику, рассуждали не формальным, а неким общечеловеческим образом, считая всем известным и понятным смысл слов: "из утверждения Этот шаг впервые был сделан в работах Д. Гильберта и его школы, когда был разработан так называемый метод формализма в основаниях математики. В рамках этого направления была достигнута следующая стадия уточнения понятия аксиоматической теории, а именно выработано понятие формальной аксиоматической теории или формальной системы. В результате этого уточнения оказалось возможным представлять сами математические теории как точные математические объекты и строить общую теорию, или метатеорию, таких теорий. Программа формализации была выдвинута Д. Гильбертом с целью доказательства непротиворечивости математики точными математическими методами. Она предусматривала уточнение понятия доказательства, чтобы эти доказательства могли стать объектами точной математической теории — теории доказательств. Чтобы сделать такое возможным, доказательствам придается единая, точная и вполне определенная форма в рамках формальной аксиоматической теории, или формальной системы. Процесс формализации доказательства состоит в том, что утверждения теории заменяются конечными последовательностями определенных знаков, а логические способы заключения — формальными правилами образования новых формально представленных высказываний из уже доказанных. Будут рассмотрены вопросы, связанные с формальными аксиоматическими теориями, или формальными системами. Этот раздел будет центральным для понимания роли математической логики в математических теориях. Фундаментальная теорема Гёделя о существовании модели у всякого синтаксически непротиворечивого множества формул узкого исчисления предикатов, доказываемая во втором параграфе, устанавливает исключительно важную взаимосвязь между свойствами формальной выводимости и содержательной истинности: непротиворечивый формальный вывод не может противоречить содержанию неформальной теории. Следствия из этой теоремы (теоремы полноты, компактности, Лёвенгейма–Сколема) углубляют понимание взаимосвязей между формальным и содержательным. С разной степенью подробности рассматриваются подходы к формализации тех математических теорий, которые лежат в основаниях школьного курса математики — теории равенств, теории множеств, числовых систем, математического анализа, геометрии. Многие математики, а также представители других наук высказывают серьезные сомнения в том, стоит ли формализовать (даже если это в принципе и возможно) математические (и иные) теории, считая, что плоды формализации не оправдывают усилий, ценой которых она достигается. С помощью материала настоящей главы хотелось бы показать такие подходы к математическим теориям, истоки которых находятся в школьном курсе математики, которые осуществляет современная математическая наука с помощью математической логики. В настоящее время только формализованный подход к математическим теориям позволяет так формулировать многие важные проблемы о них, что попытки решения этих проблем можно рассматривать всерьез. О формальных аксиоматических теорияхАксиоматический метод, рассмотренный ранее, является как бы формой организации математической науки, способом исследования тех или иных математических объектов. Неформальные аксиоматические теории наполнены теоретико-множественным содержанием, понятие выводимости в них довольно расплывчато и в значительной мере опирается на здравый смысл. Дальнейший шаг на пути изучения аксиоматических теорий состоит в отходе этих теорий от содержательности, в строгой формализации понятия правила вывода и в превращении самих теорий в объекты математического исследования. В рассматриваемом материале приводится описание самого понятия формальной системы, а также рассматриваются тесно с ним связанные понятия, такие, как теоремы и метатеоремы формальной теории, интерпретации и модели формальной теории, семантическая выводимость. Об истории идеи формальной аксиоматической теории. Нет сомнения в том, что истоки понятия формальной аксиоматической теории восходят к грандиозной мечте величайшего математика XVII — начала XVIII вв. Готфрида Вильгельма Лейбница "идеи заменить вычислениями". Лейбниц жил во времена, когда обычные для нас обозначения современной математики еще только предлагались в трудах математиков того времени. Свой вклад в этот процесс внес и Лейбниц, изобретя значки для дифференциалов, интеграла и т.п. Лейбниц глубоко осознавал, что беспримерный взлет новой математики существенно основывался на освобождении от размышлений о содержательном значении математических знаков и на возможности производить вычисления с этими содержательными значениями в самом подлинном смысле этого слова. Время Лейбница было эпохой, когда аксиоматическая геометрия древних греков, идущая от Аристотеля и Евклида, переживала новый расцвет. Ее методологическая схема аксиома — доказательство — теорема — определение — доказательство — теорема —… выходила за рамки геометрии и математики и оказывала влияние на новые области философии и естествознания. Лейбницу принадлежит мысль так сформулировать правила математического доказательства, чтобы при их применении уже не потребовались рассуждения о содержательном смысле математических выражений. Нужно создать calculus ratiocinator, т. е. исчисление, в котором естественные, содержательные доказательства были бы заменены формальными вычислениями и тем самым стали бы предметом математики. Такое исчисление, разумеется, предполагает символику, в которой были бы представлены аксиомы, теоремы и определения математики. Такая символика и была целью лейбницевского языка формул, знаменитой characteristica universalis. Но, увы, даже для такого гения, как Лейбниц, еще не время было создавать современную математическую логику и современные аксиоматические теории. Формальный язык, в котором все вопросы можно было бы решать вычислением, согласно лейбницевскому лозунгу calculemus, остался мечтой. Важнейший шаг в направлении, указанном Лейбницем, был сделан в XX в. Гильбертом, который, работая над аксиоматическим построением евклидовой геометрии, развил следующую идею формализации математики. Предложения математики, равно как и законы логики, записываются при помощи особой символики в виде формул, без всякого участия словесных выражений. Процессы логического мышления заменяются манипуляциями с такого рода формулами по строго очерченным правилам, причем из уже построенных формул разрешается чисто механически, по точно указанным рецептам, составлять новые формулы, и это заменяет сознательные умозаключения, выводящие из одного предложения другое. Таким образом, и математическое, и логическое содержание исследуемого отдела математики предстает пред нами в виде цепи формул. Эта цепь начинается с формул, изображающих математические и логические аксиомы, и может быть неограниченно продолжаема путем механического составления новых формул. При этом нет необходимости помнить, какое математическое содержание записано под видом той или иной формулы; нас интересует лишь формула сама по себе как вполне конкретная и обозримая конечная комбинация знаков. Тогда, в частности, проблема непротиворечивости будет состоять в том, чтобы доказать, что в этой цепи формул не может появиться формула, изображающая противоречие. Появились работы Дедекинда и Кантора, которые сводили всю математику к теории множеств, работы Буля, Пеано, Пирса, Шредера, которые вводили начало математической символики для законов мышления, работа Фреге, пытавшегося свести всю математику к логике. Эти работы внушили безграничную веру в мощь формализации. Высокой степени точности формализация математического языка в рамках современных логических исчислений достигла в работах первоклассных математиков XX в. Рассела, Уайтхеда, Гильберта, Барнайса, Гёделя, Чёрча, А. А. Маркова, А. И. Мальцева и др. Поэтому сегодня уже можно говорить о математическом языке как о части математики, о языке как об одном из предметов, исследуемых математикой, и спорить о реализуемости мечты Лейбница. Мощное развитие логики и логического языка привело к созданию новой области математики — оснований математики, предметом изучения которой стало строение математических утверждений и математических теорий и которая поставила своей целью ответить на вопросы типа: "Как должна быть построена теория, чтобы в ней не возникло противоречий?", "Какими качествами должны обладать методы доказательства, чтобы считаться достаточно строгими? " и т.д. Одной из фундаментальных идей, на которые опираются исследования по основаниям математики, является идея формализации математических теорий, т.е. последовательного проведения аксиоматического метода построения теорий. Понятие формальной аксиоматической теорииФормализация аксиоматической теории состоит в том, что аксиомы рассматриваются как формальные последовательности символов (выражения) некоторого алфавита, а методы доказательств — как методы получения одних выражений из других с помощью операций над символами. При этом не допускается пользоваться какими-либо предположениями об объектах теории, кроме тех, которые сформулированы явно в аксиомах. Такой подход гарантирует четкость исходных утверждений и однозначность выводов. Но может создаться впечатление, что осмысленность и истинность в формализованной теории не играют никакой роли. Внешне это так. Тем не менее в действительности и аксиомы, и правила вывода стремятся выбирать таким образом, чтобы построенной с их помощью формальной теории можно было придать содержательный смысл. Определение 28.1. Формальная аксиоматическая теория Г считается определенной, если выполнены следующие условия: 1) задан алфавит теории 2) имеется подмножество выражений теории 3) выделено некоторое множество формул, называемых аксиомами теории 4) имеется конечное множество Построенное ранее формализованное исчисление высказываний может служить примером формальной аксиоматической теории. Алфавит состоит из символов: Определение 28.2. Выводом в формальной аксиоматической теории В примере 15.2 был приведен вывод формулы Далее, аналогично соответствующему понятию в формализованном исчислении высказываний (см. определение 15.1) определяется понятие вывода формулы Вторым примером формальной аксиоматической теории может служить формализованное исчисление предикатов. Итак, формальная аксиоматическая теория отличается от неформальной (содержательной), во-первых, тем, что она имеет дело с выражениями, составленными из символов некоторого алфавита, лишенных какого бы то ни было содержательного смысла, а во-вторых, расплывчатое понятие логического умозаключения, на основании которого мы выводили из одних содержательных утверждений другие, теперь заменено четким понятием отношения между выражениями из символов. Таким образом, развитие формальной аксиоматической теории есть процесс оперирования с формальными символами на основе четких формальных правил. Раз так, то такой процесс может быть поручен электронно-вычислительной машине, что сделано в отношении, например, формализованного исчисления высказываний и некоторых других формальных аксиоматических теорий. Язык и метаязык, теоремы и метатеоремы формальной теорииОписание формальных аксиоматических теорий ведется на некотором общепонятном языке, например на русском. Такой язык по отношению к языку формальной теории называется метаязыком. Он используется для формулировок утверждений о формальной теории. Язык же формальной теории (символы алфавита, слова) используется для формулировок высказываний внутри самой формальной теории и называется предметным языком (или языком-объектом). Используя метаязык, можем изучать формальную аксиоматическую теорию как бы извне, можем формулировать и доказывать те или иные свойства формальной теории — свойства ее теорем, доказательств, ее самой. Причем при доказательстве этих свойств должны использоваться общепонятные и бесспорные средства обычной логики. В результате получаем набор теорем о формальной теории, устанавливающих те или иные ее свойства. Такие теоремы называются метатеоремами. Различие между теоремами и метатеоремами в рассмотренных формальных теориях не всегда проводилось явно, но его непременно нужно иметь в виду. Например, если удалось построить вывод формулы есть высказывание самой теории групп, записанное на предметном языке, т.е. теорема. Интерпретации и модели формальной теорииОбычно теории (и не только формальные) создаются для того, чтобы описать те или иные явления окружающего мира. Поэтому ценность всякой теории в конечном счете определяется тем, насколько хорошо справляется теория с этой задачей, т. е. насколько предоставляемое ею описание адекватно описываемому явлению, участвующим в нем объектам и связям между ними. Теория (и в особенности математическая теория), созданная для описания одних объектов, нередко оказывается применимой и для описания других. Поэтому один из первых для любой теории вопросов — это вопрос о том, для описания каких объектов пригодна данная теория. Применительно к формальным аксиоматическим теориям проблема адекватности такой формальной аксиоматической теории первого порядка сигнатуры о и описываемых ею объектов представляет собой чисто математическую задачу о соответствии между множеством теорем этой теории, построенном как формальное исчисление, и содержательно построенной теорией, рассматриваемой как множество объектов с операциями и отношениями на нем (т. е. как алгебраическая система), или моделью формальной аксиоматической теории. Придадим точный математический смысл интуитивно осознаваемым понятиям интерпретации и модели формальной теории. Пусть задана сигнатура т.е. которая и представляет собой интерпретацию формальной теории данной сигнатуры Всякая замкнутая (т.е. не содержащая свободных предметных переменных) формула формальной теории (узкого исчисления предикатов) сигнатуры Существо формального подхода состоит в том, что в символы теории (даже самые привычные) не вкладывается никакого смысла, пока не введена интерпретация этих символов. В то же время никакая интерпретация не относится к числу средств самого исчисления: она позволяет осмыслить формулы исчисления, но не участвует в формальном выводе теорем. О формальных свойствах самого исчисления, его формул и их формальных преобразований принято говорить как о синтаксисе исчисления; свойства исчисления, выражаемые в терминах его интерпретаций, — это семантика исчисления. В частности, если формула Семантическая выводимостьВообще под семантикой в математической логике понимается исследование интерпретаций формальных аксиоматических теорий, изучение смысла и значения конструкций формализованного языка теории, способов понимания его логических связок и формул. Семантика рассматривает возможности точного описания и формального определения таких содержательных понятий, как "истина", "определимость", "обозначение". В несколько более узком смысле под семантикой формализованного языка понимают систему соглашений, определяющих понимание формул языка, задающих условия истинности этих формул. Построение четкой семантики достаточно сложных формализованных языков (например, типа языков аксиоматической теории множеств) является трудной проблемой. Это связано с тем, что процесс абстрагирования в математике является весьма сложным и многоступенчатым. Построение формальных языков и теорий — абстрагирование весьма высокого уровня. В его ходе используются глубокие и неочевидные абстракции, в результате чего объем объектов исследования, способы обращения с этими объектами и способы доказательства утверждений относительно таких объектов становятся весьма неопределенными. Часто семантические понятия для некоторого языка могут быть точно сформулированы в рамках более богатого языка, играющего для первого роль метаязыка. Именно такую ситуацию мы имеем для формул языка первого порядка, определяя для них семантические понятия истинности, выводимости и т.п.: мы привлекаем для этого алгебраические системы, описываемые на языке теории множеств. Этот последний и играет в данном случае роль метаязыка для формальной теории первого порядка. Будем говорить, что формула Метаматематика (свойства формальных аксиоматических теорий)Исследование формальных теорий общепонятными логическими средствами и методами называется метаматематикой. В круг метаматематических вопросов входят вопросы, связанные прежде всего с непротиворечивостью, полнотой, разрешимостью формальных аксиоматических теорий. Непротиворечивость — важнейшее свойство формальных аксиоматических теорий. Ранее рассматривалась непротиворечивость содержательных аксиоматических теорий и формализованного исчисления высказываний. Сформулированные там определения (16.8 и 27.1) применимы также и для любой формальной аксиоматической теории. Это свойство можно было бы назвать внутренней непротиворечивостью формальной теории. Также ранее отмечалось, что внутренняя непротиворечивость теории следует из наличия у теории (непротиворечивой) модели. Последнее свойство теории (наличие непротиворечивой модели) можно назвать содержательной непротиворечивостью теории. Таким образом, если теория содержательно непротиворечива, то она внутренне непротиворечива. Значительно труднее получить ответ на вопрос о справедливости обратного утверждения: всякая внутренне непротиворечивая формальная теория имеет модель, т. е. содержательно непротиворечива. Это еще одна теорема Гёделя. Доказательство этой сложной и важной теоремы математической логики будет проведено в следующем параграфе, посвященном свойствам формализованного исчисления предикатов. Еще одним важным метаматематическим понятием является понятие разрешимости формальной аксиоматической теории. Определение 28.3. Формальная аксиоматическая теория Другими словами, разрешимая теория — это такая теория, для которой можно изобрести машину, испытывающую формулы на свойство быть теоремой этой теории. Для выполнения той же задачи в неразрешимой теории такой машины построить нельзя, и для каждой конкретной формулы приходится изобретать свои методы определения того, будет ли она теоремой данной теории. Для разрешимости теории вовсе не требуется алгоритм, позволяющий доказывать (находить доказательство) каждую теорему теории. Именно таков характер теоремы 16.11 о разрешимости формализованного исчисления высказываний: на основании ее можно для каждой формулы ответить на вопрос, будет ли она доказуема, но построить доказательство нельзя. Что же касается разрешимости формализованного исчисления предикатов, то ранее отмечалось, что проблема разрешения общезначимости формулы в логике предикатов неразрешима. Этим, в частности, обусловливается и неразрешимость формализованного исчисления предикатов. Дальнейшее рассмотрение свойств формальных аксиоматических теорий приводит нас к необходимости более подробно изучить свойства формализованного (или узкого) исчисления предикатов, являющегося логическим основанием конкретных формальных математических теорий (или формальных теорий первого порядка, или элементарных теорий). Этому и посвящается следующая лекция. Но прежде чем перейти к нему, обратимся еще раз к формализованному исчислению высказываний и установим еще два его свойства как формальной аксиоматической теории. Формализованное исчисление высказываний как формальная аксиоматическая теорияИтак, формализованное исчисление высказываний представляет собой пример формальной аксиоматической теории. Более того, ранее была установлена полнота данной теории относительно алгебры высказываний, ее непротиворечивость и разрешимость. Рассмотрим вопросы внутренней полноты исчисления высказываний, т.е. выясним, будет ли эта теория абсолютно полной и полной в узком смысле (см. определения 27.5 и 27.6). Если бы формализованное исчисление высказываний было абсолютно полным, т. е. для любой формулы Теорема 28.4. Формализованное исчисление высказываний полно в узком смысле. Доказательство. Пусть Итак, обе формулы
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |