Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Формализация математической теории | |
---|---|
Онлайн-сервисы
Нахождение НОД и НОК
Разложение числа на простые множители
Сравнения по модулю
Операции над множествами
Операции над векторами
Разложение вектора по базису. Доказательство, что векторы образуют базис
Чертёж треугольника по координатам вершин
Решение треугольника
Решение Пирамиды
Построение Пирамиды по координатам вершин
Чертёж многоугольника по координатам вершин
Решение систем методом Крамера и Матричным
Онлайн построение графика кривой 2-го порядка
Определение вида кривой или поверхности 2-го порядка по инвариантам
МНК и регрессионный анализ Онлайн + графики
Онлайн число, сумма и дата прописью
Алгоритмы JavaScript
Алгоритмы поиска
Алгоритмы сортировки
Уникальные элементы массива
Объединение, пересечение и разность массивов
НОД и НОК
Операции над матрицами
Дата прописью
Введение в анализ
Функции: понятие, определение, графики
Непрерывность функции
Исследование функции и построение графика
Теория множеств
Множества: понятие, определение, примеры
Точечные множества
Замкнутые и открытые множества
Мера множества
Группы, кольца, поля в математике
Поле комплексных чисел
Кольцо многочленов
Основная теорема алгебры и ее следствия
Математическая логика
Алгебра высказываний
Аксиоматика и логические рассуждения
Методы доказательств теорем
Алгебра высказываний и операции над ними
Формулы алгебры высказываний
Тавтологии алгебры высказываний
Логическая равносильность формул
Нормальные формы для формул высказываний
Логическое следование формул
Приложение алгебры высказываний для теорем
Дедуктивные и индуктивные умозаключения
Решение логических задач
Принцип полной дизъюнкции
Булевы функции
Множества, отношения и функции в логике
Булевы функции от одного и двух аргументов
Булевы функции от n аргументов
Системы булевых функций
Применение булевых функций к релейно-контактным схемам
Релейно-контактные схемы в ЭВМ
Практическое применение булевых функций
Теория формального
Формализованное исчисление высказываний
Полнота и другие свойства формализованного исчисления высказываний
Независимость системы аксиом формализованного исчисления высказываний
Логика предикатов
Логика предикатов
Логические операции над предикатами
Кванторные операции над предикатами
Формулы логики предикатов
Тавтологии логики предикатов
Преобразования формул и следование их предикатов
Проблемы разрешения для общезначимости и выполнимости формул
Применение логики предикатов в математике
Строение математических теорем
Аристотелева силлогистика и методы рассуждений
Принцип полной дизъюнкции в предикатной форме
Метод полной математической индукции
Необходимые и достаточные условия
Логика предикатов и алгебра множеств
Формализованное исчисление предикатов
Неформальные и формаль-ные аксиоматические теории
Неформальные аксиоматические теории
Свойства аксиоматических теорий
Формальные аксиоматические теории
Формализация теории аристотелевых силлогизмов
Свойства формализованного исчисления предикатов
Формальные теории первого порядка
Формализация математической теории
Теория алгоритмов
Интуитивное представление об алгоритмах
Машины Тьюринга и тезис
Рекурсивные функции
Нормальные алгоритмы Маркова
Разрешимость и перечислимость множеств
Неразрешимые алгоритмические проблемы
Теорема Гёделя о неполноте формальной арифметики
Математическая логика и компьютеры
Дискретная математика
Множества и отношения
Теория множеств: понятия и определения
Операции над множествами
Кортеж и декартово произведение множеств
Соответствия и бинарные отношения на множествах
Операции над соответствиями на множествах
Семейства множеств
Специальные свойства бинарных отношений
Отношения эквивалентности на множестве
Упорядоченные множества
Теорема о неподвижной точке
Мощность множества
Парадокс Рассела
Метод характеристических функций
Группы и кольца
Алгебраические структуры и операции
Группоиды, полугруппы, группы
Кольца, тела, поля
Области целостности в теории колец
Модули и линейные пространства
Подгруппы и подкольца
Теорема Лагранжа о порядке конечной группы
Гомоморфизмы групп и нормальные делители
Гомоморфизмы и изоморфизмы колец
Алгебра кватернионов
Полукольца и булевы алгебры
Полукольца: определение, аксиомы, примеры
Замкнутые полукольца
Полукольца и системы линейных уравнений
Булевы алгебры и полукольца
Решетки и полурешетки
Алгебраические системы
Алгебраические системы: модели и алгебры
Подсистемы алгебраических систем
Конгруэнции и фактор-системы
Гомоморфизмы алгебраических систем
Прямые произведения алгебраических систем
Конечные булевы алгебры
Многосортные алгебры
Теория графов
Теория графов: основные понятия и определения
Способы представления графов
Неориентированные и ориентированные деревья
Остовное дерево и алгоритм Краскала
Методы систематического обхода вершин графа
Алгоритмы поиска в глубину и ширину в графах
Задача о путях во взвешенных ориентированных графах
Изоморфизм, гомоморфизм и автоморфизм графов
Топологическая сортировка вершин графа
Элементы цикломатики в теории графов
Булева алгебра и функции
Булевы функции и булев куб
Таблицы булевых функций и булев оператор
Равенство булевых функций. Фиктивные переменные
Формулы и суперпозиции булевых функций
Дизъюнктивные и конъюнктивные нормальные формы
Построение минимальных ДНФ
Теорема Поста и классы
Критерий Поста
Схемы из функциональных элементов
Конечные автоматы и регулярные языки
Конечные автоматы и регулярные языки
Алфавит, слово, язык в программировании
Порождающие грамматики (грамматики Хомского)
Классификация грамматик и языков
Регулярные языки и регулярные выражения
Конечные автоматы
Допустимость языка конечным автоматом
Теорема Клини
Детерминизация конечных автоматов
Минимизация конечных автоматов
Лемма о разрастании для регулярных языков
Обоснование алгоритма детерминизации автоматов
Конечные автоматы с выходом
Морфизмы и конечные подстановки
Машины Тьюринга
Контекстно-свободные языки
Контекстно-свободные языки и грамматики
Приведенная форма КС-грамматики
Лемма о разрастании для КС-языков
Магазинные автоматы (автомат с магазинной памятью)
Алгоритм построения МП-автомата по КС-грамматике
Алгоритм построения КС-грамматики по МП-автомату
Алгебраические свойства КС-языков
Основное свойство суперпозиции КС-языков
Пересечение контекстно-свободных языков
Методы синтаксического анализа КС-языков
Восходящий синтаксический анализ и LR(k)-грамматики
Семантика формальных языков
Принцип индукции по неподвижной точке
Графовое представление МП-автоматов
Интегральное исчисление
Неопределённый и определённый
Неопределенный и определенный интегралы
Свойства интегралов
Интегрирование по частям
Интегрирование методом замены переменной
Интегрирование различных рациональных функций
Интегрирование различных иррациональных функций
Интегрирование различных тригонометрических функций
Определенный интеграл и его основные свойства
Необходимое и достаточное условие интегрируемости
Теоремы существования первообразной
Свойства определенных интегралов
Несобственные интегралы
Интегральное определение логарифмической функции
Приложения интегралов
Вычисление площадей плоских фигур
Площади фигур в различных координатах
Вычисление объемов тел с помощью интегралов
Объём тела вращения
Вычисление длин дуг кривых
Формулы длины дуги регулярной кривой
Кривизна плоской кривой
Площадь поверхности вращения тела
Интегралы в физике
Статические моменты и координаты центра тяжести
Теоремы Гульдина–Паппа
Вычисление моментов инерции
Другие приложения интегралов в физике
Основные интегралы
Вариационное исчисление
Примеры вариационных задач
Дифференциальное уравнение Эйлера
Функционалы, зависящие от нескольких функций
Задача о минимуме кратного интеграла
Финансовый анализ
Анализ эффективности
Критерии и показатели эффективности предприятия
Методы анализа эффективности деятельности
Факторный анализ прибыли от операционной деятельности
Анализ безубыточности предприятия
Операционный рычаг и эффект финансового рычага
Анализ и оценка состава, структуры и динамики доходов и расходов
Анализ рентабельности и резервов устойчивого роста капитала
Анализ распределения прибыли предприятия
Анализ и оценка чувствительности показателей эффективности
Анализ устойчивости
Финансовая устойчивость и долгосрочная платежеспособность
Характеристика типов финансовой устойчивости
Рыночная активность
Финансовый анализ рыночной активности
Методика анализа рыночной активности
Анализ и оценка дивидендного дохода на одну акцию
Инвестиционная деятельность
Инвестиции: экономическая сущность и классификация
Государственное регулирование инвестиционной деятельности
Источники финансовых ресурсов на капитальные вложения
Инвестиции в основные фонды
Оценка состояния основных фондов
Амортизация основных фондов
Капитальное строительство в инвестиционном процессе
Планирование инвестиций в форме капитальных вложений
Экономическая эффективность инвестиций
Финансирование капитальных вложений
Кредитование капитальных вложений
Кредитоспособность
Финансирование и кредитование затрат
Финансирование и кредитование инвестиционной деятельности потребительской кооперации
Финансирование и кредитование капитальных вложений потребительской кооперации
Инвестиционное строительное проектирование
Анализ инвестиций
Инвестиции и инвестиционная деятельность предприятия
Задачи финансового анализа инвестиций предприятия
Учет фактора времени в инвестиционной деятельности
Аннуитет и финансовая рента в инвестициях
Учет фактора инфляции при инвестировании
Оценка фактора риска инвестиционного проекта
Методы оценки эффективности инвестиций
Показатели эффективности инвестиционного проекта
Стоимость компании
Концепция построения международных стандартов финансовой отчетности (МСФО)
Экономическое содержание международных стандартов финансовой отчётности
Цели и принципы оценки стоимости акций и активов компании
Оценка акций и активов предприятия по справедливой стоимости
Методы оценки справедливой стоимости акций предприятия
Затратный подход к оценки стоимости компаний и акций
Сравнительный подход к оценки стоимости предприятий и акций
Доходный подход к оценке стоимости компании и акций
Выбор ставки дисконтирования при инвестировании в акции
Метод капитализации прибыли
Сравнение подходов к оценке стоимости компаний и пакетов акций
Форвардные контракты
Форвардный контракт и цена
Форвардная цена акции на бирже
Цена форвардного контракта инвестора
Форвардная цена акции с учетом величины дивиденда
Форвардная цена акции с учетом ставки дивиденда
Форвардная цена валюты на рынке форекс
Форвардный валютный курс и инфляция на рынке
Форвардная цена товара и спотовый рынок
Форвардная цена при различии ставок по кредитам и депозитам
Синтетический форвардный контракт на акции и валюту
Теория вероятностей
Основные понятия теории вероятностей
Зависимые и независимые случайные события
Повторные независимые испытания
Формула Бернулли
Одномерные случайные величины
Многомерные случайные величины
Функции случайных величин
Законы распределения целочисленных случайных величин
Законы распределения непрерывных случайных величин
Предельные теоремы теории вероятностей
Закон больших чисел и предельные теоремы
Вероятностные закономерности
Математическая статистика
Элементы математической статистики
Выборочный метод
Оценки параметров генеральной совокупности
Статистические гипотезы
Критерии согласия
Теоретические и эмпирические частоты
Теория очередей (СМО)
Определение системы массового обслуживания
Уравнения Колмогорова
Предельные вероятности состояний
Определение СМО с отказами
Определение СМО с ожиданием (очередью)
Аналитическая геометрия
Векторная алгебра
Метрические понятия и аксиомы геометрии
Равенство и подобие геометрических фигур
Бинарные отношения
Вектор, его направление и длина
Линейные операции над векторами
Линейная зависимость и независимость векторов
Отношение коллинеарных векторов
Проекции векторов на прямую и на плоскость
Угол между векторами
Ортогональные проекции векторов
Координата вектора на прямой и базис
Координаты вектора на плоскости и базис
Координаты вектора в пространстве и базис
Операции над векторами в координатной форме
Ортогональный и ортонормированный базисы
Cкалярное произведение векторов и его свойства
Выражение скалярного произведения через координаты векторов
Векторное произведение векторов и его свойства
Смешанное произведение векторов и его свойства
Ориентированные площади и объемы
Двойное векторное произведение и его свойства
Применение векторов в задачах на аффинные свойства фигур
Применение произведений векторов при решении геометрических задач
Применение векторной алгебры в механике
Системы координат
Прямоугольные координаты
Преобразования прямоугольных координат
Полярная система координат
Цилиндрическая система координат
Сферические координаты
Аффинные координаты
Аффинные преобразования координат
Аффинные преобразования плоскости
Примеры аффинных преобразований плоскости
Аффинные преобразования пространства
Многомерное координатное пространство
Линейные и аффинные подпространства
Скалярное произведение n-мерных векторов
Преобразования систем координат
Геометрия на плоскости
Алгебраические линии на плоскости
Общие уравнения геометрических мест точек
Алгебраические уравнения линий на плоскости
Уравнения прямой, проходящей через точку перпендикулярно вектору
Уравнения прямой, проходящей через точку коллинеарно вектору
Уравнения прямой, проходящей через две точки
Уравнения прямой с угловым коэффициентом
Взаимное расположение прямых
Примеры задач с прямыми на плоскости
Системы неравенств с двумя неизвестными
Системы линейных уравнений с двумя неизвестными
Линии 2-го порядка
Канонические уравнения линий второго порядка
Порядок приведения уравнения линии к каноническому виду
Эллипс
Гипербола
Парабола
Квадратичные неравенства с двумя неизвестными
Применение линий 1-го и 2-го порядков в задачах на экстремум функций
Инварианты линий
Классификация линий 2-го порядка по инвариантам
Приведение уравнения линии к каноническому виду по инвариантам
Геометрия в пространстве
Способы задания ГМТ в пространстве
Алгебраические уравнения поверхностей
Уравнения плоскости, проходящей через точку перпендикулярно вектору
Уравнения плоскости, компланарной двум неколлинеарным векторам
Уравнения плоскости, проходящей через три точки
Взаимное расположение плоскостей
Типовые задачи с плоскостями
Уравнения прямых в пространстве
Взаимное расположение прямых в пространстве
Типовые задачи с прямыми в пространстве
Поверхности 2-го порядка
Канонические уравнения поверхностей
Порядок приведения уравнения поверхности к каноническому виду
Поверхности второго порядка
Эллипсоиды
Гиперболоиды
Конусы
Параболоиды
Применение поверхностей 1-го и 2-го порядков в задачах на экстремум функций
Инварианты поверхностей
Линейная алгебра
Матрицы и операции
Линейные операции над матрицами
Умножение матриц
Возведение матриц в степень
Многочлены от матриц
Транспонирование и сопряжение матриц
Блочные матрицы
Произведение и сумма матриц Кронекера
Метод Гаусса приведения матрицы к ступенчатому виду
Элементарные преобразования матриц
Определители
Определители матриц и их основные свойства
Формула полного разложения определителя
Формула Лапласа полного разложения определителя
Определитель произведения матриц
Методы вычисления определителей
Ранг матрицы
Линейная зависимость и линейная независимость строк (столбцов) матрицы
Ранг матрицы и базисный минор матрицы
Методы вычисления ранга матрицы
Ранг системы столбцов (строк)
Обратная матрица
Обратные матрицы и их свойства
Ортогональные и унитарные матрицы
Способы нахождения обратной матрицы
Матричные уравнения
Односторонние обратные матрицы
Скелетное разложение матрицы
Полуобратная матрица
Псевдообратная матрица
Системы уравнений
Системы линейных алгебраических уравнений
Метод Гаусса решения систем линейных уравнений
Структура общего решения системы уравнений
Решение систем с помощью полуобратных матриц
Псевдорешения системы линейных уравнений
Функциональные матрицы
Функциональные матрицы скалярного аргумента
Производные матриц по векторному аргументу
Линейные и квадратичные формы и их преобразования
Приведение форм к каноническому виду
Закон инерции вещественных квадратичных форм
Знакоопределенность форм вещественных квадратичных
Формы и исследование функций на экстремум
Многочленные матрицы
Многочленные матрицы (лямбда-матрицы)
Операции над лямбда-матрицами
Простые преобразования многочленных матриц
Инвариантные множители многочленной матрицы
Функции от матриц
Собственные векторы и значения матрицы
Подобие числовых матриц
Характеристический многочлен матрицы
Минимальный многочлен матрицы
Теорема Гамильтона-Кэли
Жорданова форма матрицы
Приведение матрицы к жордановой форме
Многочлены от матриц
Применение многочленов от матриц
Функции от матриц
Линейные пространства
Линейные пространства: определение и примеры
Линейная зависимость и независимость n-мерных векторов
Размерность и базис линейного пространства
Преобразования координат в линейном пространстве
Изоморфизм линейных пространств
Подпространства
Подпространства линейного пространства
Пересечение и сумма подпространств
Способы описания подпространств
Нахождение дополнения и суммы подпространств
Нахождение пересечения подпространств
Линейные отображения
Линейные многообразия
Линейные отображения
Матрица линейного отображения
Ядро и образ линейного отображения
Линейные операторы
Линейные операторы (преобразования)
Инвариантные подпространства
Собственные векторы и значения оператора
Свойства собственных векторов операторов
Канонический вид линейного оператора
Методика приведения линейного преобразования к каноническому виду
Евклидовы пространства
Евклидовы пространства
Ортогональные векторы евклидова пространства
Ортогональный базис евклидова пространства
Ортонормированный базис евклидова пространства
Ортогональные дополнения в евклидовом пространстве
Задача о перпендикуляре
Матрица и определитель Грама и его свойства
Линейные преобразования евклидовых пространств
Канонический вид ортогонального оператора евклидова пространства
Сопряженные операторы евклидова пространства
Самосопряженные операторы евклидова пространства
Приведение квадратичной формы к главным осям
Унитарные пространства и их линейные преобразования
Комплексный анализ
Комплексные числа
Комплексные числа в алгебраической форме
Комплексные числа в тригонометрической и показательной формах
Множества на комплексной плоскости
Последовательности и ряды комплексных чисел
Комплексные функции
Функции комплексного переменного. Предел, непрерывность и производная
Элементарные функции комплексного переменного
Дифференцирование функций комплексного переменного
Аналитические функции и их свойства
Конформные отображения
Функциональные ряды в комплексной области
и их свойства Интегрирование функций комплексного переменного
Функциональные ряды и последовательности
Степенные ряды и их свойства
Разложение функций в степенные ряды
Нули аналитических функций
Ряд Лорана и разложение функций по целым степеням
Особые точки, Вычеты
Изолированные особые точки функций и полюсы
Вычеты и их применение
Вычисление интегралов с помощью вычетов
Вычеты и расположение нулей многочлена
Операционное исчисление
Дифференциальные уравнения
ДУ первого порядка
Основные понятия и определения ДУ
Метод изоклин для ДУ 1-го порядка
Метод последовательных приближений
ДУ с разделяющимися переменными
Однородные ДУ
Линейные ДУ 1-го порядка
Дифференциальное уравнение Бернулли
ДУ в полных дифференциалах
Интегрирующий множитель
ДУ, не разрешенные относительно производной
Дифференциальное уравнение Риккати
Составление ДУ семейств линий
Задачи на траектории
Особые решения ДУ
ДУ высших порядков
Понятия и определения ДУ высших порядков
ДУ, допускающие понижение порядка
Линейная независимость функций
Определители Вронского и Грама
Однородные и неоднородные дифференциальные уравнения
Задача Коши и Уравнение Эйлера
Линейные ДУ с переменными коэффициентами
Метод Лагранжа решения ДУ
Краевые задачи для ДУ высших порядков
Разложение решения ДУ в степенной ряд
Разложение решения ДУ в обобщенный степенной ряд
Нахождение периодических решений ДУ
Асимптотическое интегрирование ДУ
Системы ДУ
Системы ДУ: понятия и определения
Сведение системы ДУ к одному уравнению
Нахождение интегрируемых комбинаций
Интегрирование однородных линейных систем ДУ
Методы интегрирования неоднородных систем ДУ
Преобразование Лапласа и решение ДУ и систем
Теория устойчивости
Численные методы
Методы алгебры
Численные методы линейной алгебры
Численные методы решения СЛАУ
Итерационный метод Шульца обратной матрицы
Методы решения задач о собственных значениях и векторах матрицы
Методы решения нелинейных уравнений
Методы решения систем нелинейных уравнений
Методы теории приближений
Методы приближения сеточных функций
Методы функциональной интерполяции
Методы интегрально-дифференциальной интерполяции
Методы интегрального сглаживания
Методы интерполяции и сглаживания сплайнами
Методы численного дифференцирования и интегрирования
Методы численного дифференцирования
Методы численного интегрирования
Методы решения обыкновенных ДУ
Численные методы решения задачи Коши
Разностные схемы для решения задачи Коши
Составные схемы для решения задачи Коши
Экстраполяционные методы решения задачи Коши
Непрерывно-дискретные методы решения задачи Коши
Численные методы решения краевых задач
Методы решения ДУ в частных производных
Численные методы решения уравнений математической физики с двумя переменными
Принципы построения разностных схем для уравнений в частных производных
Разностные схемы решения уравнений в частных производных 1-го порядка
Разностные схемы решения уравнений в частных производных 2-го порядка
Численные методы решения уравнений в частных производных
Численные методы решения уравнений математической физики с тремя переменными
|
Формализация математической теорииФормальная арифметикаЯзык и аксиомы. Это — логико-математическое исчисление (или прикладное исчисление первого порядка), формализующее элементарную теорию чисел. Наиболее популярная формализация основана на подходе Пеано, предложенном им в 1889 г. и рассмотренном нами в ранее (пример 26.3). Язык этого исчисления кроме логических связок и равенства содержит нелогическую константу 0, двухместные функциональные символы где Средства формальной арифметики оказываются достаточными для вывода теорем, устанавливаемых в стандартных курсах элементарной теории чисел. Более того, формальная арифметика оказывается эквивалентной аксиоматической теории множеств Программа Гильберта формализации математики и теорема Гёделя о неполнотеФормальная арифметика играет исключительно важную роль в основаниях математики. Это связано с тем, что именно арифметика лежит в основаниях классической математики, проблема непротиворечивости которой сводится к проблеме непротиворечивости арифметики. Эта содержательная сторона нашла свое наивысшее выражение и на формальном уровне. Одним из путей выхода из кризиса в основаниях математики в начале XX в., обусловленного обнаружением парадоксов (антиномий) в теории множеств, должен был стать гильбертовский путь формализации математики и логики. Каждая конкретная математическая теория должна быть переведена на язык подходящей формальной системы таким образом, чтобы каждое осмысленное (ложное или истинное) предложение содержательной теории выражалось бы некоторой формулой формальной системы. Тогда естественно было надеяться, что этот метод формализации позволит строить все положительное содержание математических теорий на такой точной и, казалось бы, надежной основе, как понятие выводимой формулы (теоремы формальной системы). Кроме того, такие принципиальные вопросы, как проблема противоречивости математических теорий, решались бы в форме доказательства соответствующих утверждений о формализующих эти теории формальных системах. Поскольку описанные нами формальные системы сами оказываются точными, или, как говорили в школе Гильберта, финитными, математическими объектами, можно было ожидать, что удастся получить финитные доказательства утверждений о непротиворечивости, т.е. доказательства, которые в определенном смысле были бы эффективными, не зависящими от тех мощных средств, вроде абстракции актуальной бесконечности, которые в классических математических теориях как раз и являются причиной трудностей в их обосновании. Но результаты, полученные Гёделем в начале 1930-х гг., привели к краху основных надежд, связывавшихся с этой программой Гильберта. Гёдель доказал следующие две теоремы, получившие общее название "теорема о неполноте формальной арифметики": 1) всякая естественная непротиворечивая формализация 2) если формализованная арифметика в действительности непротиворечива, то хотя утверждение о ее непротиворечивости выразимо на ее собственном языке, но доказательство этого утверждения средствами, формализуемыми в ней самой, невозможно. Эта теорема, как и первая, распространяется на всякую непротиворечивую формальную систему, содержащую формальную арифметику. Доказательство первой теоремы проводится разработанным Гёделем методом арифметизации синтаксиса языка формальной теории, который стал одним из основных методов теории доказательств (метаматематики). Этим методом строится формально неразрешимая формула. Фиксируется нумерация основных формальных объектов (формул, конечных последовательностей формул и т.д.) натуральными числами, такая, что основные свойства этих объектов (быть аксиомой, быть выводом по правилам системы и т.д.) оказываются распознаваемыми по их номерам с помощью весьма простых алгоритмов. Столь же просто вычисляются по номерам исходных данных номера результатов комбинаторных преобразований (например, подстановки терма в формулу вместо переменной). При этом оказывается возможным написать арифметическую формулу Доказательство второй теоремы получается путем формализации доказательства первой и существенно использует особенности арифметизации синтаксиса рассматриваемой системы. Из первой теоремы Гёделя о неполноте арифметики видно, что (семантическое) понятие истинности в арифметике, а следовательно, и во всей математике нельзя исчерпывающим образом формализовать посредством (синтаксического) понятия доказуемости в какой-либо одной формально-логической системе. Вторая теорема Гёделя о неполноте арифметики показывает, что и основная цель первоначальной программы Гильберта по формализации математики оказывается недостижимой. Эта цель состояла в том, чтобы доказать формальную непротиворечивость арифметики, пользуясь при этом так называемыми "финитными" методами, т.е. лишь такими методами доказательств, которые применяются в самой арифметике. Но всякое разумное уточнение понятия финитного доказательства, по-видимому, формализуемо в формальной арифметике и потому, согласно второй теореме Гёделя, невозможно. Гильберту и представителям его школы для выполнения гильбертовской программы удалось доказать строго финитными методами непротиворечивость весьма широкой подсистемы арифметики; подсистема эта имеет лишь тот недостаток, что принцип индукции формулируется в ней в ослабленной форме, что препятствует применению его к квалифицированным предложениям. Вторая теорема Гёделя показывает, что такой частичный неуспех гильбертовской школы объясняется отнюдь не недостатком изобретательности ее представителей, а., как выяснилось впоследствии, объективной картиной явления. Напротив, теперь мы знаем, что они продвинулись в этом направлении настолько далеко, насколько это вообще было возможно. Упомянем также еще об одной важной теореме метаматематики, доказанной в 1936 г. американским логиком А.Чёрчем. В ней утверждается, что не существует эффективной процедуры для решения вопроса относительно произвольной формулы формальной теории, содержащей арифметику натуральных чисел, является ли такая формула теоремой теории, т. е. всякая такая формальная теория неразрешима. Из этой теоремы вытекает, в частности, и теорема Гёделя о неполноте. Впоследствии была доказана неразрешимость большого числа формальных теорий, в частности элементарной теории групп, элементарной теории полей. После этих результатов Гёделя стало ясно, что для решения одного из основных вопросов математики — проблемы непротиворечивости, по-видимому, не обойтись без других, отличных от финитистских, средств и идей. Непротиворечивость формальной системы может быть обоснована только средствами более сильными, чем те, которые формализованы в данной системе. Здесь оказались возможными разные подходы, не для всех математиков в равной степени приемлемые или убедительные, в частности, ввиду существования различных точек зрения на допустимость тех или иных логических средств. В 1936 г. Г. Генцен получил доказательство непротиворечивости формальной арифметики, использующее средство, отсутствующее в арифметике, — так называемую трансфинитную (бесконечную) индукцию до некоторого счетного трансфинитного числа. Теорема ТарскогоПриведем еще одну теорему — теорему А.Тарского об истинности, показывающую, что формальным системам присуща ограниченность еще одного типа. Содержательное понятие истинности, которым мы постоянно пользуемся, также поддается формализации. Понятие истинности в формальной системе Таким образом, если теорема Гёделя о неполноте обнаруживает принципиальную ограниченность дедуктивных возможностей любой достаточно богатой системы, то теорема Тарского вскрывает ограниченность выразительных возможностей таких систем. Перефразируя образное изречение Куайна, можно сказать, что формальные системы попытались проглотить больший кусок онтологии, чем они в состоянии переварить. Нестандартная модель формальной арифметики и ее некатегоричностьРанее мы отмечали, что аксиоматическая теория натуральных чисел, построенная на базе системы аксиом Пеано, категорична, т.е. имеет единственную с точностью до изоморфизма модель. С использованием теоремы Гёделя о неполноте формальной арифметики можно доказать существование неизоморфных моделей формальной арифметики. Таким образом, формальная арифметика, основывающаяся на аксиомах, перечисленных ранее, является некатегоричной формальной системой. Этот интересный факт можно объяснить разной трактовкой входящей в обе системы аксиомы индукции. В аксиоме индукции из системы Пеано участвует множество Ясно, что моделью формальной арифметики является обычное множество натуральных чисел Пользуясь локальной теоремой Гёделя–Мальцева (см. следствие 29.17 из теоремы 29.16), установим наличие у формальной арифметики одной необычной модели. Она называется нестандартная модель арифметики. Рассмотрим следующую бесконечную совокупность формул формальной арифметики: (в последней формуле в правой части равенства Наконец, обозначив через Формальные теории числовых системВопрос о природе понятия числа никогда не стоял на обочине магистрального пути математических исследований во все времена. Математика, достигнув того или иного уровня в своем развитии, неизменно обращалась к своим основам, где центральную роль всегда играло понятие числа. Во второй половине XIX в. в связи с необходимостью обоснования математического анализа и приведения в систему огромного количества результатов, полученных в этой области математики, числа снова оказались в центре внимания математиков. Математика XX в. и прежде всего значительно развившаяся математическая логика еще выше подняли уровень требований к строгости обоснования основ математической науки и в первую очередь понятия числа. Потребовалось создание формальных аксиоматических теорий основных систем чисел. Ведь в конечном итоге математика не интересует природа чисел и вопрос о том, откуда они берутся. Его интересует, каковы свойства этих чисел, и желательно перечисление всех таких свойств чисел, из которых чисто логически вытекали бы все теоремы соответствующей математической дисциплины и в первую очередь математического анализа. Первый этап формализацииВыше рассказывалось о формальной арифметике, т.е. о формализации теории натуральных чисел. Здесь будут кратко описаны формальные теории других систем чисел — целых, рациональных, действительных. Систему целых чисел можно охарактеризовать с помощью следующих условий. Кольцо целых чисел — это есть кольцо с единицей Систему рациональных чисел можно охарактеризовать с помощью следующих условий. Поле рациональных чисел — это простое поле характеристики нуль. (Поле называется простым, если оно не имеет подполей, отличных от него самого. Говорят, что поле имеет характеристику нуль, если Для системы действительных чисел известно довольно много разнообразных аксиоматических характеризаций, т.е. таких систем аксиом, для которых система действительных чисел является единственной с точностью до изоморфизма моделью. Согласно одной из них множество вещественных чисел характеризуется как полное упорядоченное поле, т.е. как поле, в котором любое ограниченное сверху множество имеет точную верхнюю грань. Гильберт охарактеризовал множество вещественных чисел как максимальное архимедово упорядоченное поле (т. е. любое поле, являющееся его расширением, уже не архимедово). Наконец, третья характеризация утверждает, что система действительных чисел и только она является плотным в себе полным по Дедекинду линейно упорядоченным множеством без наименьшего и наибольшего элементов, в котором существует счетное всюду плотное подмножество. (Плотность означает, что между любыми двумя элементами множества расположен еще хотя бы один элемент. Полнота по Дедекинду: всякое непустое ограниченное сверху подмножество имеет точную верхнюю грань. Существование всюду плотного подмножества, называемое свойством сепарабельности (отделимости), означает, что для каждого элемента множества существует как угодно близкий к нему элемент этого подмножества.) Проблема М.Я. СуслинаС этой характеристикой системы действительных чисел связана одна из знаменитейших проблем XX в. — проблема М.Я. Суслина. Эта проблема состоит в том, что требуется узнать, сохранится ли указанная характеристика системы действительных чисел, если в ней последнее условие сепарабельности заменить более слабым требованием, называемым условием Суслина: любая система из попарно не пересекающихся непустых интервалов не более чем счётна. Другими словами, будет ли изоморфно системе действительных чисел линейно упорядоченное множество, удовлетворяющее перечисленным выше условиям, кроме, сепарабельности, и условию Суслина. Судьба этой проблемы, оказалась поистине исторической, и на ее решение потребовалось более 40 лет. Предположение о ее положительном решении получила название гипотезы Суслина. Контрпример к гипотезе (хотя пока и не существующий), т.е. упорядоченное множество, удовлетворяющее всем условиям проблемы! М. Я. Суслина, но не изоморфное действительной прямой, получил названий континуум Суслина. Эта проблема встала в один ряд с континуум-проблемой Кантора, и полное решение их обеих было получено лишь в начале 1960-х гг., когда американский математик П.Коэн открыл принципиально новый метод доказательства, получивший название метода форсинга (вынуждений). (За это открытие он был удостоен в 1966 г. на Международном математическом конгрессе в Москве высшей международной награды, которой удостаиваются ученые-математики, — Филдсовской премии.) Выяснилось, что проблему Суслина, как и континуум-проблему Кантора, вообще невозможно решить в обычном смысле слов — решить проблему, т. е. дать определенный ответ "да" или "нет" на поставленный вопрос. Гипотеза Суслина, как и континуум-гипотеза Кантора, оказалась не зависящей от остальных аксиом теории множеств. Другими словами, возможна теория множеств, в которой гипотеза Суслина справедлива, и возможна теория множеств, в которой эта гипотеза не выполняется. Кроме того, была также установлена взаимная независимость и самих двух гипотез — гипотезы Суслина и континуум-гипотезы Кантора. Вопросы, связанные с гипотезой Суслина, продолжают исследоваться в многочисленных работах по теории множеств. Рассматриваются обобщения этой гипотезы, вводятся новые, связанные с ней понятия и конструкции, которые называются именем Суслина. Они широко используются не только в теории множеств, но и проникают в смежные с ней области — теорию моделей, теоретико-множественную топологию. В обширном потоке современных публикаций по этим дисциплинам часто встречается имя М. Я. Суслина: суслинские множества, критерий Суслина, гипотеза Суслина, континуум Суслина, свойство Суслина, дерево Суслина, число Суслина, коэффициент Суслина и т.д. Углубление формализации: элементарная теория вещественно замкнутых полейС точки зрения строго формального подхода и к описанным только что формальным теориям числовых систем, и к формальной арифметике, описанной выше, можно высказать серьезные претензии. Суть их состоит в том, что все эти теории все же еще не до конца формализованы. Дело в том, что приведенные выше характеризации, например системы действительных чисел, сформулированы в терминах не только основных, элементарных понятий, таких, как где Аналогично обстоит дело с содержательным свойством полноты поля действительных чисел: всякое ограниченное сверху множество имеет точную верхнюю грань. При его формализации приходится вводить схему аксиом (называемую аксиомой полноты), в которой снова понятие множества заменено на определяющее его свойство Словесно эту запись можно прочитать так: если существует число, обладающее свойством Таким образом, формальная (элементарная) теория вещественных чисел может быть построена на базе системы следующих аксиом: аксиомы поля; аксиомы порядка: аксиома полноты (схема аксиом). Это означает, что система действительных чисел есть полное линейно упорядоченное поле. Иногда аксиому полноты формулируют в более ограниченном виде — не для произвольного свойства F(x) действительных чисел где 1) 2) Аксиомы поля и аксиомы порядка (т. е. аксиомы линейно упорядоченного поля) и аксиома полноты в одной из двух последних формулировок образуют систему аксиом элементарной теории так называемых вещественно-замкнутых полей. Разрешимость и абсолютная полнота элементарной теории вещественно-замкнутых полейПриведенные в предыдущем пункте системы аксиом представляют собой попытки аксиоматизировать совокупность свойств, справедливых в системе действительных чисел. Считается, что самый большой успех аксиоматизации достигнут, если с ее помощью удается обосновать эффективную разрешающую процедуру, т. е. процедуру, которая для любого предложения Идея метода элиминации кванторов состоит в следующем. Вначале доказывается, что для любой формулы 1) превратить самые внутренние кванторы этого предложения в кванторы существования, если они не таковы (пользоваться при этом законами де Моргана); 2) привести область действия каждого из этих кванторов к дизъюнктивной нормальной форме; 3) распределить кванторы существования по дизъюнктивным членам; 4) заменить все ∃-формулы 5) если полученная формула все еще не является бескванторной, то повторить описанные шаги, начиная с п. 1; в противном случае рассматриваемое предложение Таким образом, метод элиминации кванторов сводит логический вопрос о (раз)решении к математическому вопросу о критериях существования решения совершенно определенной задачи. Что касается теории вещественно-замкнутых полей, то решение обсуждаемой проблемы в ней основывается на классической теореме Штурма (доказанной еще в 1829 г.) и доставляющей средство определения числа (вещественных) корней алгебраического многочлена с целыми коэффициентами между двумя заданными границами, а также общего числа корней такого многочлена. Теорема утверждает, что число корней между выводима из аксиом элементарной теории вещественно-замкнутых полей. Заслуга А.Тарского состоит в том, что он доказал эту теорему в следующем обобщенном виде: для любой бескванторной формулы выводима из аксиом элементарной теории вещественно-замкнутых полей. С помощью этой теоремы уже легко обосновывается процедура элиминации кванторов Для элементарной теории вещественно-замкнутых полей. В самом деле, пусть Но ведь из этой формулы можно удалить кванторы на основании обобщенной теоремы Штурма. Итак, выводимость из аксиом вещественно-замкнутых полей разрешима, т. е. разрешима элементарная теория вещественно-замкнутых полей. Более того, эта теория полна, т.е. для любого данного суждения о действительных числах, которое может быть выражено на формальном языке формальной теории вещественно-замкнутых полей, либо само это суждение, либо его отрицание выводимо из аксиом этой теории. Кроме того, АТарский показал, что теорема элементарной алгебры истинна в поле вещественных чисел тогда и только тогда, когда она верна во всех вещественно-замкнутых полях, т.е. выводима в элементарной теории вещественно-замкнутых полей. Формальная геометрияВ вопросе о понятии математического пространства особенно остро проявляется проблема соотношения математики с окружающей действительностью. Математической наукой о физическом пространстве как раз и является геометрия. Ньютон считал, что основанием для геометрии является практика механики, и в действительности геометрия есть не что иное, как та часть механики в целом, которая точно устанавливает и обосновывает искусство измерения. Следовательно, смысл геометрии заключается в подведении под искусство измерения прочного и достаточно обязательного базиса: необходимо, чтобы математические следствия основных допущений о физическом пространстве можно было проверить фактическим измерением в этом пространстве. Но установление соответствия между математической теорией и эфемерным реальным пространством не является математической задачей. С точки зрения математики задача формализации геометрии выглядит примерно следующим образом. Нужно принять некоторую математическую концепцию реального физического пространства. Поскольку в качестве системы расстояний в евклидовой геометрии принимается поле Координатизация геометрического пространстваХорошо известна модель планиметрической части системы аксиом Гильберта, в которой точкой плоскости является упорядоченная пара Из аксиом (1.1)–(1.3) первой группы аксиом системы аксиом Гильберта вытекает существование в нашей планиметрии фигуры, играющей важнейшую роль в процессе ее координатизации. Эта фигура состоит из двух прямых Лемма 30.4. Если две различные прямые Доказательство. Если допустить, что это не так для некоторой прямой Теперь определяем сложение точек Тогда Аналогично определяется умножение точек Тогда из подобия треугольников Можно показать, что так определяемые операции определены корректно и удовлетворяют всем аксиомам поля. Упорядочение в этом поле основывается на геометрическом отношении "между": Наконец, чтобы наше упорядоченное поле было полным (всякое ограниченное сверху подмножество имело точную верхнюю грань), нужно, чтобы исходная геометрия удовлетворяла аксиоме непрерывности (или полноты). Известны различные формы таких аксиом, например Кантора, Дедекинда. Приведем еще одну формулировку. Аксиома полноты: пусть Из геометрической аксиомы полноты (непрерывности) немедленно следует, что поле, построенное на прямой Поле, построенное на прямой Остается выразить требование взаимной перпендикулярности осей координат Если В итоге точечное пространство упорядоченных пар Элементарная теория евклидовой планиметрииЗадача формализации аксиоматической геометрии, построенной, например, на базе системы аксиом Гильберта, снова ставит нас перед проблемой, уже возникавшей при формализации теорий числовых систем: как адекватно выразить содержание аксиомы полноты (непрерывности), в формулировке которой участвуют множества Из этой схемы Тарского непосредственно следует, что построенное на прямой Таким образом, элементарная теория евклидовой геометрии на плоскости, построенная на основе планиметрических аксиом системы Гильберта, полна, т. е. для любого предложения Формальный математический анализЭто формальная аксиоматическая теория, специально предназначенная для формализации (точного описания доказательств) математического анализа. Таких теорий существует несколько: они характеризуются различными подходами к формализации. При этом каждую из них стараются строить по возможности минимальной по своим дедуктивным и выразительным возможностям, но все же достаточной для формализации всего традиционного материала математического анализа. Наиболее распространенной из формальных теорий математического анализа является теория Гильберта–Бернайса. Она строится следующим образом. К языку формальной арифметики, описанной в предыдущем пункте, добавляется новый вид переменных где Эта теория Гильберта–Бернайса, хотя в ней речь идет лишь о натуральных числах и о множествах натуральных чисел, достаточна для естественной формализации математического анализа. Интересна проблема обоснования непротиворечивости этой теории. Согласно теореме Гёделя о неполноте формальной арифметики для этого необходимо использовать средства, выходящие за пределы формального математического анализа. В 1962 г. К. Спектор доказал непротиворечивость этой теории с помощью остроумной модификации модели Гёделя для интуиционистской арифметики, которая представляет собой некоторое далеко идущее расширение требований интуиционизма. Трудности в попытках доказательства непротиворечивости теории Гильберта —Бернайса связаны с той особенностью аксиомы свертывания этой теории, что в формуле Имеется эквивалентная формулировка анализа Гильберта–Бернайса, в которой вместо множеств натуральных чисел фигурируют функции, перерабатывающие натуральные числа в натуральные. Для такого вида функции к формальной арифметике добавляются переменные Эта аксиома утверждает, что если для всякого Для устранения непредикативности были предложены различные формальные аксиоматические теории предикативного (или разветвленного) анализа. Общий взгляд на процесс формализации математической теорииОзнакомившись с рядом формальных аксиоматических теорий, так или иначе связанных с основаниями школьного курса математики, подведем итог, дав краткую общую характеристику методу формализации. Суть этого метода состоит в следующем. Допустим, у нас имеется некоторая содержательная математическая теория Такой подход открывает возможность строго математически сформулировать интересующие нас проблемы, относящиеся к выводимости некоторых формул в Один из важнейших вопросов о теории Существует и другой путь доказательства непротиворечивости формальной системы, идущий через понятие интерпретации и модели. Формальная система называется содержательно (или семантически) непротиворечивой, если существует модель, в которой истинны все теоремы этой системы. Без труда устанавливается, что если формальная система содержательно непротиворечива, то она формально непротиворечива. Для формальных систем, основанных на классическом исчислении предикатов 1-го порядка, справедливо и обратное утверждение (теорема Гёделя о модели): всякая непротиворечивая формальная теория имеет модель. Таким образом, другой способ доказательства непротиворечивости формальной теории состоит в построении ее модели. Но и этот метод является относительным: он устанавливает непротиворечивость одной формальной системы относительно другой, в терминах которой построена модель первой. Можно, далее, исследовать аналогичным образом и метатеорию О границах аксиоматического метода, метода формализации и логикиНасколько универсален и насколько всемогущ аксиоматический метод и его наивысшее математическое выражение — формализация? Прежде всего, границы методу формализации были поставлены двумя выдающимися теоремами К. Гёделя, доказанными им в 1931 г. Первая из них утверждает, что для всякой непротиворечивой формальной системы, содержащей аксиомы формальной арифметики, можно дать явное описание замкнутой формулы Эти теоремы Гёделя фактически означали, что истинное утверждение не всегда может быть доказано. Эти логические теоремы по существу разрушали восходящее к Лейбницу и Декарту мнение, будто всякое истинное утверждение подвластно обоснованию методами математического доказательства. Но оставалась надежда, что выводимость ненамного меньше истинности, что недоказуемыми являются лишь экзотические формулы гёделевского типа, в которых зашифрованы утверждения, относящиеся к самим этим формулам. Однако результаты, полученные А.Тарским в 1936 г., окончательно разрушили и эту последнюю надежду (см. более подробно об этом в Заключении). Конечно, эти результаты, показывающие, что расстояние от доказуемости (выводимости) до истинности столь велико, могут служить солидным основанием для значительной доли пессимизма в оценке роли логики (и в частности, математической логики) в процессе познания окружающего мира и истины. Некоторые определенные философы истолковывают эти результаты как полное отрицание роли логики в процессе познания, считая, что она нужна лишь для придания уже полученным результатам общепонятной и убедительной формы, а сам механизм получения этих результатов совершенно иной. Не следует истолковывать эти результаты и как полный крах формального подхода к математическим теориям. Эти результаты несомненно означают, что первоначальная "максималистская" гильбертовская программа финитистского подхода к обоснованию математики не может быть реализована в полном объеме: нельзя построить математику как некоторую фиксированную совокупность средств, которые можно было бы объявить единственно законными, и с их помощью строить метатеории любых теорий. Невозможность полной формализации содержательно определенных математических теорий — это не недостаток подхода или концепции, а объективный факт, неустранимый никакой концепцией, "суровая правда" об устройстве мира, изучаемого этой теорией. Невозможность адекватной формализации теории означает, что надо либо искать формализуемые ею фрагменты, либо строить какую-то более сильную формальную теорию, которая, правда, снова будет неполна, но, быть может, будет содержать всю исходную теорию. Рассматриваемые выдающиеся результаты Гёделя и Тарского демонстрируют не только слабость математической логики в процессах познания, но и ее силу, еще раз являя уникальность этой науки. Она единственная из всех наук своими собственными строгими методами устанавливает границы своей применимости. Фактически средствами математической логики устанавливаются границы применимости математики. Наука с такими уникальными возможностями не может быть бесполезна для дела познания окружающего мира, и, думается, что ее будущие результаты заставят еще не раз как математиков, так и философов обратиться к их интерпретации.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |