Евклидовы пространства
Определение евклидова пространства
Вещественное линейное пространство называется евклидовым, если каждой паре элементов этого пространства поставлено в соответствие действительное число , называемое скалярным произведением, причем это соответствие удовлетворяет следующим условиям:
![\begin{aligned} &\bold{1.}\quad \langle\mathbf{u},\mathbf{v}\rangle= \langle\mathbf{v}, \mathbf{u}\rangle\quad \forall \mathbf{u},\mathbf{v}\in \mathbb{E}\,;\\[5pt] &\bold{2.}\quad \langle\mathbf{u}+\mathbf{v},\mathbf{w}\rangle= \langle\mathbf{u}, \mathbf{w}\rangle+ \langle\mathbf{v},\mathbf{w}\rangle\quad \forall \mathbf{u},\mathbf{v},\mathbf{w}\in \mathbb{E}\,;\\[5pt] &\bold{3.}\quad \langle \lambda\cdot \mathbf{u},\mathbf{v}\rangle= \lambda\cdot \langle\mathbf{u},\mathbf{v}\rangle\quad \forall \mathbf{u},\mathbf{v}\in \mathbb{E},~~ \forall \lambda\in \mathbb{R}\,;\\[5pt] &\bold{4.}\quad \langle\mathbf{v},\mathbf{v}\rangle>0\quad \forall \mathbf{v}\ne \mathbf{o}~\land~ \langle\mathbf{v},\mathbf{v}\rangle=0~~ \Rightarrow~~ \mathbf{v}=\mathbf{o}\,.\end{aligned}]()
В скалярном произведении вектор — первый, а вектор — второй сомножители. Скалярное произведение вектора на себя называется скалярным квадратом. Условия 1–4 называются аксиомами скалярного произведения. Аксиома 1 определяет симметричность скалярного произведения, аксиомы 2 и 3 — аддитивность и однородность по первому сомножителю, аксиома 4 — неотрицательность скалярного квадрата .
Линейные операции над векторами евклидова пространства удовлетворяют аксиомам 1–8 линейного пространства, а операция скалярного умножения векторов удовлетворяет аксиомам 1–4 скалярного произведения. Можно сказать, что евклидово пространство — это вещественное линейное пространство со скалярным произведением. Поскольку евклидово пространство является линейным пространством, на него переносятся все понятия, определенные для линейного пространства, в частности, понятия размерности и базиса.
Простейшие следствия из аксиом скалярного произведения
1. Аксиомы 2 и 3 скалярного произведения можно заменить одним условием линейности скалярного произведения по первому сомножителю:
2. Условие линейности скалярного произведения по первому сомножителю в силу симметричности (аксиома 1) справедливо и для второго сомножителя, т.е. скалярное произведение линейно по любому сомножителю.
3. Линейность скалярного произведения по любому сомножителю распространяется на линейные комбинации векторов:
для любых векторов и действительных чисел .
4. Если хотя бы один сомножитель — нулевой вектор, то скалярное про изведение равно нулю:
Действительно, представим нулевой вектор в виде , где — произвольный вектор из . Тогда из аксиомы 3 получаем:
Неравенство Коши-Буняковского
Для любых векторов и евклидова пространства выполняется неравенство Коши-Буняковского:
 (8.25)
В самом деле, для любого действительного числа и любых векторов и справедливо неравенство:
Следовательно, дискриминант квадратного трехчлена (переменной ) не больше нуля, т.е. . Отсюда следует (8.25). Заметим, что равенство нулю дискриминанта возможно только в случае существования такого корня , для которого . Это условие равносильно коллинеарности векторов и . Напомним, что ненулевые векторы и называются коллинеарными, если существует такое число , что . Нулевой вектор считается коллинеарным любому вектору. Неравенство Коши-Буняковского выполняется как равенство только для коллинеарных векторов и как строгое неравенство для неколлинеарных.
Примеры евклидовых пространств
Определяя для элементов линейного пространства операцию скалярного произведения, получаем евклидово пространство. Если скалярное произведение можно ввести разными способами в одном и том же линейном пространстве, то и получаемые евклидовы пространства будут разными. Приведем примеры евклидовых пространств, соответствующих рассмотренным ранее примерам линейных пространств.
1. В нулевом линейном пространстве скалярное произведение можно определить единственным способом, положив . Аксиомы скалярного произведения при этом выполняются.
2. В пространствах векторы (свободные или радиус- векторы) рассматриваются как направленные отрезки. В курсе элементарной геометрии вводятся понятия длины вектора и величины угла между векторами, а затем определяется скалярное произведение: . Аксиомы 1—4 для этого скалярного произведения выполняются. Поэтому пространства являются евклидовыми. Неравенство Коши-Буняковского в этом пространстве означает, что . Геометрический смысл: длина проекции не превосходит длины наклонной (катет короче гипотенузы).
3. В пространстве скалярное произведение столбцов и можно задать формулой:
 (8.26)
где — квадратная симметрическая положительно определенная матрица n-го порядка. Проверим выполнение аксиом 1-4. Аксиома 1 (симметричность) выполняется в силу симметричности матрицы , поскольку число при транспонировании не изменяется, т.е. . Свойство линейности по первому сомножителю (см. п.1 простейших следствий из аксиом) для (8.26) выполняется:
Значит, выполняются аксиомы 2 и 3. Аксиома 4 также выполняется, так как квадратичная форма положительно определенная. Таким образом, пространство со скалярным произведением (8.26) является евклидовым пространством. В частности, если в качестве матрицы взять единичную матрицу, формула (8.26) примет вид:
 (8.27)
Это скалярное произведение считается стандартным в пространстве . Неравенство (8.25) Коши-Буняковского в «-мерном арифметическом пространстве со скалярным произведением (8.27) трансформируется в неравенство Коши:
Приведем примеры формул, которые не задают скалярного произведения в 
1) — аксиомы 1, 4 выполняются, а аксиомы 2, 3 — нет;
2) — аксиомы 1, 2, 3 выполняются, а аксиома 4 — нет.
4. Пространство решений однородной системы линейных уравнений со скалярным произведением (8.27) является евклидовым пространством.
5. В пространстве действительных функций, определенных и непрерывных на данном промежутке , скалярное произведение можно задать формулой:
 (8.28)
В самом деле, аксиомы 1, 2, 3 для (8.28) выполняются в силу свойств определенного интеграла. Проверим выполнение аксиомы 4. Для ненулевой функции , так как, если в какой-нибудь точке функция , то в силу непрерывности она отлична от нуля в некоторой окрестности точки , целиком лежащей в интервале . Поэтому интеграл от в этой окрестности больше нуля.
Таким образом, пространство со скалярным произведением (8.28) является евклидовым. Скалярное произведение (8.28) считается стандартным в пространстве . Для разрывных функций формула (8.28) не определяет скалярного произведения, так как нарушается аксиома 4. Неравенство (8.25) Коши-Буняковского в пространстве со скалярным произведением (8.28) трансформируется в неравенство Шварца:
6. В пространстве многочленов с действительными коэффициентами скалярное произведение можно задать формулой (8.28), так как многочлены являются непрерывными функциями.
В пространстве многочленов степени не выше, чем , зададим скалярное произведение многочленов и формулой:
 (8.29)
Выражение в правой части (8.29) симметрично для коэффициентов двух многочленов, поэтому аксиома 1 выполняется. Аксиомы 2, 3 следуют из линейности выражения по коэффициентам каждого многочлена. Проверим аксиому 4. Запишем скалярный квадрат . Заметим, что только при , т.е. в случае нулевого много члена . Следовательно, формула (8.29) задает скалярное произведение в пространстве .
В пространстве определим произведение формулой:
 (8.30)
В силу симметричности и линейности правой части (8.30) по значениям многочленов, заключаем, что аксиомы 1-3 выполняются. Проверим выполнение аксиомы 4. Приравняв скалярный квадрат нулю, получаем
Это возможно только при . Из этих трех равенств не следует, однако, что многочлен нулевой. Например, ненулевой многочлен удовлетворяет трем равенствам. Следовательно, в пространстве формула (8.30) не задает скалярного произведения. Напротив, в пространстве формула (8.30) определяет скалярное произведение. Так как из равенств следует, что многочлен степени не выше второй тождественно равен нулю.
Длина вектора и угол между векторами в евклидовом пространстве
Длиной (нормой) вектора в евклидовом пространстве называется число .
Имея в виду обозначение, длину называют также модулем вектора. Рассматривается арифметическое значение квадратного корня, которое определено для любого вектора из-за неотрицательности подкоренного выражения (аксиома 4). Поэтому каждый вектор имеет положительную длину, за исключением нулевого, длина которого равна нулю: .
Углом между ненулевыми векторами и евклидова пространства называется число
Представив неравенство Коши-Буняковского (8.25) в виде можно сделать вывод, что абсолютное значение выражения не превосходит единицы, т.е. величина угла определена для любой пары ненулевых векторов. Заметим, что угол между коллинеарными векторами равен нулю или .
Длина вектора и угол между векторами называются основными метрическими понятиями .
Из неравенства Коши-Буняковского (8.25) следует неравенство треугольника:
Докажем последнее неравенство. Применяя оценку , получаем
то есть .
Пример 8.17. Даны векторы евклидовых пространств:
а) — элементы пространства со скалярным произведением (8.27): ;
б) — элементы пространства со скалярным произведением (8.26):
в) — элементы пространства со скалярным произведением (8.28): .
г) — элементы пространства со скалярным произведением (8.29): ;
д) — элементы пространства со скалярным произведением (8.30):
В каждом пространстве найти длины двух данных векторов и угол между ними.
Решение. а) Находим скалярные произведения:
Следовательно, .
б) Находим скалярные произведения:
Следовательно, .
в) Находим скалярные произведения:
Следовательно, .
г) Находим скалярные произведения:
Следовательно, .
д) Находим скалярные произведения:
Следовательно, .
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|