Математический форум Math Help Planet
Обсуждение и решение задач по математике, физике, химии, экономике Теоретический раздел |
Часовой пояс: UTC + 3 часа [ Летнее время ] |
новый онлайн-сервис число, сумма и дата прописью |
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |
Элементы математической статистики. Выборочный метод | |
---|---|
Онлайн-сервисы
Нахождение НОД и НОК
Разложение числа на простые множители
Сравнения по модулю
Операции над множествами
Операции над векторами
Разложение вектора по базису. Доказательство, что векторы образуют базис
Чертёж треугольника по координатам вершин
Решение треугольника
Решение Пирамиды
Построение Пирамиды по координатам вершин
Чертёж многоугольника по координатам вершин
Решение систем методом Крамера и Матричным
Онлайн построение графика кривой 2-го порядка
Определение вида кривой или поверхности 2-го порядка по инвариантам
МНК и регрессионный анализ Онлайн + графики
Онлайн число, сумма и дата прописью
Алгоритмы JavaScript
Алгоритмы поиска
Алгоритмы сортировки
Уникальные элементы массива
Объединение, пересечение и разность массивов
НОД и НОК
Операции над матрицами
Дата прописью
Введение в анализ
Функции: понятие, определение, графики
Непрерывность функции
Исследование функции и построение графика
Теория множеств
Множества: понятие, определение, примеры
Точечные множества
Замкнутые и открытые множества
Мера множества
Группы, кольца, поля в математике
Поле комплексных чисел
Кольцо многочленов
Основная теорема алгебры и ее следствия
Математическая логика
Алгебра высказываний
Аксиоматика и логические рассуждения
Методы доказательств теорем
Алгебра высказываний и операции над ними
Формулы алгебры высказываний
Тавтологии алгебры высказываний
Логическая равносильность формул
Нормальные формы для формул высказываний
Логическое следование формул
Приложение алгебры высказываний для теорем
Дедуктивные и индуктивные умозаключения
Решение логических задач
Принцип полной дизъюнкции
Булевы функции
Множества, отношения и функции в логике
Булевы функции от одного и двух аргументов
Булевы функции от n аргументов
Системы булевых функций
Применение булевых функций к релейно-контактным схемам
Релейно-контактные схемы в ЭВМ
Практическое применение булевых функций
Теория формального
Формализованное исчисление высказываний
Полнота и другие свойства формализованного исчисления высказываний
Независимость системы аксиом формализованного исчисления высказываний
Логика предикатов
Логика предикатов
Логические операции над предикатами
Кванторные операции над предикатами
Формулы логики предикатов
Тавтологии логики предикатов
Преобразования формул и следование их предикатов
Проблемы разрешения для общезначимости и выполнимости формул
Применение логики предикатов в математике
Строение математических теорем
Аристотелева силлогистика и методы рассуждений
Принцип полной дизъюнкции в предикатной форме
Метод полной математической индукции
Необходимые и достаточные условия
Логика предикатов и алгебра множеств
Формализованное исчисление предикатов
Неформальные и формаль-ные аксиоматические теории
Неформальные аксиоматические теории
Свойства аксиоматических теорий
Формальные аксиоматические теории
Формализация теории аристотелевых силлогизмов
Свойства формализованного исчисления предикатов
Формальные теории первого порядка
Формализация математической теории
Теория алгоритмов
Интуитивное представление об алгоритмах
Машины Тьюринга и тезис
Рекурсивные функции
Нормальные алгоритмы Маркова
Разрешимость и перечислимость множеств
Неразрешимые алгоритмические проблемы
Теорема Гёделя о неполноте формальной арифметики
Математическая логика и компьютеры
Дискретная математика
Множества и отношения
Теория множеств: понятия и определения
Операции над множествами
Кортеж и декартово произведение множеств
Соответствия и бинарные отношения на множествах
Операции над соответствиями на множествах
Семейства множеств
Специальные свойства бинарных отношений
Отношения эквивалентности на множестве
Упорядоченные множества
Теорема о неподвижной точке
Мощность множества
Парадокс Рассела
Метод характеристических функций
Группы и кольца
Алгебраические структуры и операции
Группоиды, полугруппы, группы
Кольца, тела, поля
Области целостности в теории колец
Модули и линейные пространства
Подгруппы и подкольца
Теорема Лагранжа о порядке конечной группы
Гомоморфизмы групп и нормальные делители
Гомоморфизмы и изоморфизмы колец
Алгебра кватернионов
Полукольца и булевы алгебры
Полукольца: определение, аксиомы, примеры
Замкнутые полукольца
Полукольца и системы линейных уравнений
Булевы алгебры и полукольца
Решетки и полурешетки
Алгебраические системы
Алгебраические системы: модели и алгебры
Подсистемы алгебраических систем
Конгруэнции и фактор-системы
Гомоморфизмы алгебраических систем
Прямые произведения алгебраических систем
Конечные булевы алгебры
Многосортные алгебры
Теория графов
Теория графов: основные понятия и определения
Способы представления графов
Неориентированные и ориентированные деревья
Остовное дерево и алгоритм Краскала
Методы систематического обхода вершин графа
Алгоритмы поиска в глубину и ширину в графах
Задача о путях во взвешенных ориентированных графах
Изоморфизм, гомоморфизм и автоморфизм графов
Топологическая сортировка вершин графа
Элементы цикломатики в теории графов
Булева алгебра и функции
Булевы функции и булев куб
Таблицы булевых функций и булев оператор
Равенство булевых функций. Фиктивные переменные
Формулы и суперпозиции булевых функций
Дизъюнктивные и конъюнктивные нормальные формы
Построение минимальных ДНФ
Теорема Поста и классы
Критерий Поста
Схемы из функциональных элементов
Конечные автоматы и регулярные языки
Конечные автоматы и регулярные языки
Алфавит, слово, язык в программировании
Порождающие грамматики (грамматики Хомского)
Классификация грамматик и языков
Регулярные языки и регулярные выражения
Конечные автоматы
Допустимость языка конечным автоматом
Теорема Клини
Детерминизация конечных автоматов
Минимизация конечных автоматов
Лемма о разрастании для регулярных языков
Обоснование алгоритма детерминизации автоматов
Конечные автоматы с выходом
Морфизмы и конечные подстановки
Машины Тьюринга
Контекстно-свободные языки
Контекстно-свободные языки и грамматики
Приведенная форма КС-грамматики
Лемма о разрастании для КС-языков
Магазинные автоматы (автомат с магазинной памятью)
Алгоритм построения МП-автомата по КС-грамматике
Алгоритм построения КС-грамматики по МП-автомату
Алгебраические свойства КС-языков
Основное свойство суперпозиции КС-языков
Пересечение контекстно-свободных языков
Методы синтаксического анализа КС-языков
Восходящий синтаксический анализ и LR(k)-грамматики
Семантика формальных языков
Принцип индукции по неподвижной точке
Графовое представление МП-автоматов
Интегральное исчисление
Неопределённый и определённый
Неопределенный и определенный интегралы
Свойства интегралов
Интегрирование по частям
Интегрирование методом замены переменной
Интегрирование различных рациональных функций
Интегрирование различных иррациональных функций
Интегрирование различных тригонометрических функций
Определенный интеграл и его основные свойства
Необходимое и достаточное условие интегрируемости
Теоремы существования первообразной
Свойства определенных интегралов
Несобственные интегралы
Интегральное определение логарифмической функции
Приложения интегралов
Вычисление площадей плоских фигур
Площади фигур в различных координатах
Вычисление объемов тел с помощью интегралов
Объём тела вращения
Вычисление длин дуг кривых
Формулы длины дуги регулярной кривой
Кривизна плоской кривой
Площадь поверхности вращения тела
Интегралы в физике
Статические моменты и координаты центра тяжести
Теоремы Гульдина–Паппа
Вычисление моментов инерции
Другие приложения интегралов в физике
Основные интегралы
Вариационное исчисление
Примеры вариационных задач
Дифференциальное уравнение Эйлера
Функционалы, зависящие от нескольких функций
Задача о минимуме кратного интеграла
Финансовый анализ
Анализ эффективности
Критерии и показатели эффективности предприятия
Методы анализа эффективности деятельности
Факторный анализ прибыли от операционной деятельности
Анализ безубыточности предприятия
Операционный рычаг и эффект финансового рычага
Анализ и оценка состава, структуры и динамики доходов и расходов
Анализ рентабельности и резервов устойчивого роста капитала
Анализ распределения прибыли предприятия
Анализ и оценка чувствительности показателей эффективности
Анализ устойчивости
Финансовая устойчивость и долгосрочная платежеспособность
Характеристика типов финансовой устойчивости
Рыночная активность
Финансовый анализ рыночной активности
Методика анализа рыночной активности
Анализ и оценка дивидендного дохода на одну акцию
Инвестиционная деятельность
Инвестиции: экономическая сущность и классификация
Государственное регулирование инвестиционной деятельности
Источники финансовых ресурсов на капитальные вложения
Инвестиции в основные фонды
Оценка состояния основных фондов
Амортизация основных фондов
Капитальное строительство в инвестиционном процессе
Планирование инвестиций в форме капитальных вложений
Экономическая эффективность инвестиций
Финансирование капитальных вложений
Кредитование капитальных вложений
Кредитоспособность
Финансирование и кредитование затрат
Финансирование и кредитование инвестиционной деятельности потребительской кооперации
Финансирование и кредитование капитальных вложений потребительской кооперации
Инвестиционное строительное проектирование
Анализ инвестиций
Инвестиции и инвестиционная деятельность предприятия
Задачи финансового анализа инвестиций предприятия
Учет фактора времени в инвестиционной деятельности
Аннуитет и финансовая рента в инвестициях
Учет фактора инфляции при инвестировании
Оценка фактора риска инвестиционного проекта
Методы оценки эффективности инвестиций
Показатели эффективности инвестиционного проекта
Стоимость компании
Концепция построения международных стандартов финансовой отчетности (МСФО)
Экономическое содержание международных стандартов финансовой отчётности
Цели и принципы оценки стоимости акций и активов компании
Оценка акций и активов предприятия по справедливой стоимости
Методы оценки справедливой стоимости акций предприятия
Затратный подход к оценки стоимости компаний и акций
Сравнительный подход к оценки стоимости предприятий и акций
Доходный подход к оценке стоимости компании и акций
Выбор ставки дисконтирования при инвестировании в акции
Метод капитализации прибыли
Сравнение подходов к оценке стоимости компаний и пакетов акций
Форвардные контракты
Форвардный контракт и цена
Форвардная цена акции на бирже
Цена форвардного контракта инвестора
Форвардная цена акции с учетом величины дивиденда
Форвардная цена акции с учетом ставки дивиденда
Форвардная цена валюты на рынке форекс
Форвардный валютный курс и инфляция на рынке
Форвардная цена товара и спотовый рынок
Форвардная цена при различии ставок по кредитам и депозитам
Синтетический форвардный контракт на акции и валюту
Теория вероятностей
Основные понятия теории вероятностей
Зависимые и независимые случайные события
Повторные независимые испытания
Формула Бернулли
Одномерные случайные величины
Многомерные случайные величины
Функции случайных величин
Законы распределения целочисленных случайных величин
Законы распределения непрерывных случайных величин
Предельные теоремы теории вероятностей
Закон больших чисел и предельные теоремы
Вероятностные закономерности
Математическая статистика
Элементы математической статистики
Выборочный метод
Оценки параметров генеральной совокупности
Статистические гипотезы
Критерии согласия
Теоретические и эмпирические частоты
Теория очередей (СМО)
Определение системы массового обслуживания
Уравнения Колмогорова
Предельные вероятности состояний
Определение СМО с отказами
Определение СМО с ожиданием (очередью)
Аналитическая геометрия
Векторная алгебра
Метрические понятия и аксиомы геометрии
Равенство и подобие геометрических фигур
Бинарные отношения
Вектор, его направление и длина
Линейные операции над векторами
Линейная зависимость и независимость векторов
Отношение коллинеарных векторов
Проекции векторов на прямую и на плоскость
Угол между векторами
Ортогональные проекции векторов
Координата вектора на прямой и базис
Координаты вектора на плоскости и базис
Координаты вектора в пространстве и базис
Операции над векторами в координатной форме
Ортогональный и ортонормированный базисы
Cкалярное произведение векторов и его свойства
Выражение скалярного произведения через координаты векторов
Векторное произведение векторов и его свойства
Смешанное произведение векторов и его свойства
Ориентированные площади и объемы
Двойное векторное произведение и его свойства
Применение векторов в задачах на аффинные свойства фигур
Применение произведений векторов при решении геометрических задач
Применение векторной алгебры в механике
Системы координат
Прямоугольные координаты
Преобразования прямоугольных координат
Полярная система координат
Цилиндрическая система координат
Сферические координаты
Аффинные координаты
Аффинные преобразования координат
Аффинные преобразования плоскости
Примеры аффинных преобразований плоскости
Аффинные преобразования пространства
Многомерное координатное пространство
Линейные и аффинные подпространства
Скалярное произведение n-мерных векторов
Преобразования систем координат
Геометрия на плоскости
Алгебраические линии на плоскости
Общие уравнения геометрических мест точек
Алгебраические уравнения линий на плоскости
Уравнения прямой, проходящей через точку перпендикулярно вектору
Уравнения прямой, проходящей через точку коллинеарно вектору
Уравнения прямой, проходящей через две точки
Уравнения прямой с угловым коэффициентом
Взаимное расположение прямых
Примеры задач с прямыми на плоскости
Системы неравенств с двумя неизвестными
Системы линейных уравнений с двумя неизвестными
Линии 2-го порядка
Канонические уравнения линий второго порядка
Порядок приведения уравнения линии к каноническому виду
Эллипс
Гипербола
Парабола
Квадратичные неравенства с двумя неизвестными
Применение линий 1-го и 2-го порядков в задачах на экстремум функций
Инварианты линий
Классификация линий 2-го порядка по инвариантам
Приведение уравнения линии к каноническому виду по инвариантам
Геометрия в пространстве
Способы задания ГМТ в пространстве
Алгебраические уравнения поверхностей
Уравнения плоскости, проходящей через точку перпендикулярно вектору
Уравнения плоскости, компланарной двум неколлинеарным векторам
Уравнения плоскости, проходящей через три точки
Взаимное расположение плоскостей
Типовые задачи с плоскостями
Уравнения прямых в пространстве
Взаимное расположение прямых в пространстве
Типовые задачи с прямыми в пространстве
Поверхности 2-го порядка
Канонические уравнения поверхностей
Порядок приведения уравнения поверхности к каноническому виду
Поверхности второго порядка
Эллипсоиды
Гиперболоиды
Конусы
Параболоиды
Применение поверхностей 1-го и 2-го порядков в задачах на экстремум функций
Инварианты поверхностей
Линейная алгебра
Матрицы и операции
Линейные операции над матрицами
Умножение матриц
Возведение матриц в степень
Многочлены от матриц
Транспонирование и сопряжение матриц
Блочные матрицы
Произведение и сумма матриц Кронекера
Метод Гаусса приведения матрицы к ступенчатому виду
Элементарные преобразования матриц
Определители
Определители матриц и их основные свойства
Формула полного разложения определителя
Формула Лапласа полного разложения определителя
Определитель произведения матриц
Методы вычисления определителей
Ранг матрицы
Линейная зависимость и линейная независимость строк (столбцов) матрицы
Ранг матрицы и базисный минор матрицы
Методы вычисления ранга матрицы
Ранг системы столбцов (строк)
Обратная матрица
Обратные матрицы и их свойства
Ортогональные и унитарные матрицы
Способы нахождения обратной матрицы
Матричные уравнения
Односторонние обратные матрицы
Скелетное разложение матрицы
Полуобратная матрица
Псевдообратная матрица
Системы уравнений
Системы линейных алгебраических уравнений
Метод Гаусса решения систем линейных уравнений
Структура общего решения системы уравнений
Решение систем с помощью полуобратных матриц
Псевдорешения системы линейных уравнений
Функциональные матрицы
Функциональные матрицы скалярного аргумента
Производные матриц по векторному аргументу
Линейные и квадратичные формы и их преобразования
Приведение форм к каноническому виду
Закон инерции вещественных квадратичных форм
Знакоопределенность форм вещественных квадратичных
Формы и исследование функций на экстремум
Многочленные матрицы
Многочленные матрицы (лямбда-матрицы)
Операции над лямбда-матрицами
Простые преобразования многочленных матриц
Инвариантные множители многочленной матрицы
Функции от матриц
Собственные векторы и значения матрицы
Подобие числовых матриц
Характеристический многочлен матрицы
Минимальный многочлен матрицы
Теорема Гамильтона-Кэли
Жорданова форма матрицы
Приведение матрицы к жордановой форме
Многочлены от матриц
Применение многочленов от матриц
Функции от матриц
Линейные пространства
Линейные пространства: определение и примеры
Линейная зависимость и независимость n-мерных векторов
Размерность и базис линейного пространства
Преобразования координат в линейном пространстве
Изоморфизм линейных пространств
Подпространства
Подпространства линейного пространства
Пересечение и сумма подпространств
Способы описания подпространств
Нахождение дополнения и суммы подпространств
Нахождение пересечения подпространств
Линейные отображения
Линейные многообразия
Линейные отображения
Матрица линейного отображения
Ядро и образ линейного отображения
Линейные операторы
Линейные операторы (преобразования)
Инвариантные подпространства
Собственные векторы и значения оператора
Свойства собственных векторов операторов
Канонический вид линейного оператора
Методика приведения линейного преобразования к каноническому виду
Евклидовы пространства
Евклидовы пространства
Ортогональные векторы евклидова пространства
Ортогональный базис евклидова пространства
Ортонормированный базис евклидова пространства
Ортогональные дополнения в евклидовом пространстве
Задача о перпендикуляре
Матрица и определитель Грама и его свойства
Линейные преобразования евклидовых пространств
Канонический вид ортогонального оператора евклидова пространства
Сопряженные операторы евклидова пространства
Самосопряженные операторы евклидова пространства
Приведение квадратичной формы к главным осям
Унитарные пространства и их линейные преобразования
Комплексный анализ
Комплексные числа
Комплексные числа в алгебраической форме
Комплексные числа в тригонометрической и показательной формах
Множества на комплексной плоскости
Последовательности и ряды комплексных чисел
Комплексные функции
Функции комплексного переменного. Предел, непрерывность и производная
Элементарные функции комплексного переменного
Дифференцирование функций комплексного переменного
Аналитические функции и их свойства
Конформные отображения
Функциональные ряды в комплексной области
и их свойства Интегрирование функций комплексного переменного
Функциональные ряды и последовательности
Степенные ряды и их свойства
Разложение функций в степенные ряды
Нули аналитических функций
Ряд Лорана и разложение функций по целым степеням
Особые точки, Вычеты
Изолированные особые точки функций и полюсы
Вычеты и их применение
Вычисление интегралов с помощью вычетов
Вычеты и расположение нулей многочлена
Операционное исчисление
Дифференциальные уравнения
ДУ первого порядка
Основные понятия и определения ДУ
Метод изоклин для ДУ 1-го порядка
Метод последовательных приближений
ДУ с разделяющимися переменными
Однородные ДУ
Линейные ДУ 1-го порядка
Дифференциальное уравнение Бернулли
ДУ в полных дифференциалах
Интегрирующий множитель
ДУ, не разрешенные относительно производной
Дифференциальное уравнение Риккати
Составление ДУ семейств линий
Задачи на траектории
Особые решения ДУ
ДУ высших порядков
Понятия и определения ДУ высших порядков
ДУ, допускающие понижение порядка
Линейная независимость функций
Определители Вронского и Грама
Однородные и неоднородные дифференциальные уравнения
Задача Коши и Уравнение Эйлера
Линейные ДУ с переменными коэффициентами
Метод Лагранжа решения ДУ
Краевые задачи для ДУ высших порядков
Разложение решения ДУ в степенной ряд
Разложение решения ДУ в обобщенный степенной ряд
Нахождение периодических решений ДУ
Асимптотическое интегрирование ДУ
Системы ДУ
Системы ДУ: понятия и определения
Сведение системы ДУ к одному уравнению
Нахождение интегрируемых комбинаций
Интегрирование однородных линейных систем ДУ
Методы интегрирования неоднородных систем ДУ
Преобразование Лапласа и решение ДУ и систем
Теория устойчивости
Численные методы
Методы алгебры
Численные методы линейной алгебры
Численные методы решения СЛАУ
Итерационный метод Шульца обратной матрицы
Методы решения задач о собственных значениях и векторах матрицы
Методы решения нелинейных уравнений
Методы решения систем нелинейных уравнений
Методы теории приближений
Методы приближения сеточных функций
Методы функциональной интерполяции
Методы интегрально-дифференциальной интерполяции
Методы интегрального сглаживания
Методы интерполяции и сглаживания сплайнами
Методы численного дифференцирования и интегрирования
Методы численного дифференцирования
Методы численного интегрирования
Методы решения обыкновенных ДУ
Численные методы решения задачи Коши
Разностные схемы для решения задачи Коши
Составные схемы для решения задачи Коши
Экстраполяционные методы решения задачи Коши
Непрерывно-дискретные методы решения задачи Коши
Численные методы решения краевых задач
Методы решения ДУ в частных производных
Численные методы решения уравнений математической физики с двумя переменными
Принципы построения разностных схем для уравнений в частных производных
Разностные схемы решения уравнений в частных производных 1-го порядка
Разностные схемы решения уравнений в частных производных 2-го порядка
Численные методы решения уравнений в частных производных
Численные методы решения уравнений математической физики с тремя переменными
|
Элементы математической статистики. Выборочный методГенеральная и выборочная совокупности. Статистические распределения выборок. Кумулята и ее свойства. Гистограмма и полигон статистических распределений. Числовые характеристики: выборочная средняя; дисперсия выборки; среднеквадратическое отклонение; мода и медиана для дискретных и интервальных статистических распределений выборки; эмпирические начальные и центральные моменты, асимметрия и эксцесс. Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении статистических данных — результатах наблюдений. Первая задача математической статистики — указать способы сбора и группировки (если данных очень много) статистических сведений. Вторая задача математической статистики — разработать методы анализа статистических данных в зависимости от цели исследования. Изучение тех или иных явлений методами математической статистики служит средством решения многих вопросов, выдвигаемых наукой и практикой (правильная организация технологического процесса, наиболее целесообразное планирование и др.). Итак, задача математической статистики состоит в создании методов сбора и обработки статистических данных для получения научных и практических выводов. Генеральная и выборочная совокупностиПусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, для партии деталей качественным признаком может служить стандартность детали, а количественным — контролируемый размер детали. Иногда проводят сплошное обследование, т. е. обследуют каждый из объектов совокупности относительно признака, которым интересуются. На практике, однако, сплошное обследование применяется сравнительно редко. Например, если совокупность содержит большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то случайным образом отбирают из всей совокупности ограниченное число объектов и подвергают их изучению. Выборочной совокупностью, или просто выборкой, называют совокупность случайно отобранных объектов. Генеральной совокупностью называют совокупность объектов, из которых проводится выборка. Объемом совокупности (выборочной или генеральной) называют число объектов этой совокупности. Часто генеральная совокупность содержит конечное число объектов. Однако если это число достаточно велико, то иногда для упрощения вычислений или для облегчения теоретических выводов, допускают, что генеральная совокупность состоит из бесчисленного множества объектов. Такое допущение оправдывается тем, что увеличение объема генеральной совокупности (достаточно большого объема) практически не сказывается на результатах обработки данных выборки. Статистические распределения выборокВ результате статистической обработки материалов можно подсчитать число единиц, обладающих конкретным значением того или иного признака. Каждое отдельное значение признака будем обозначать Если отдельные значения признака (варианты) расположим в возрастающем или убывающем порядке и относительно каждой варианты укажем, как часто она встречается в данной совокупности, то получим статистическое распределение признака, или вариационный ряд. Он характеризует изменение (варьирование) какого-нибудь количественного признака. Следовательно, вариационный ряд представляет собой две строки (или колонки). В одной из них приводятся варианты, в другой — частоты. Вариация признака может быть дискретной и непрерывной. Дискретной называется вариация, при которой отдельные значения признака (варианты) отличаются друг от друга на некоторую конечную величину (обычно целое число); Например: количество детей в семье; оценки, полученные студентами на экзамене; размеры обуви, проданной за день фирмой. Непрерывной называется вариация, при которой значения признака могут отличаться одно от другого на сколь угодно малую величину. Например: стоимость реализованной продукции; уровень рентабельности предприятия; процент занятости трудоспособного населения; депозитная ставка коммерческих банков. При непрерывной вариации распределение признака называется интервальным. Частоты относятся не к отдельному значению признака, а ко всему интервалу. Часто значением интервала принимают его середину, т. е. центральное значение. Пример 1. Уровень рентабельности предприятий легкой промышленности характеризуется следующими данными. Нередко вместо абсолютных значений частот используют относительные. Для этого можно использовать долю частоты того или иного варианта (а также интервала) в сумме всех частот. Такая величина называется относительной частотой и обозначается где Сумма всех относительных частот равна единице: Относительные частоты можно выражать и в процентах (тогда их сумма равна 100%). В интервальном вариационном ряду в каждом интервале различают нижнюю и верхнюю границы интервала: нижняя граница интервала Так, если в совокупности 200 единиц, наибольший вариант равен 49,961, а наименьший — 49,918, то Следовательно, в данном случае оптимальной величиной интервала может служить 0,005. Гистограмма и полигон статистических распределений. КумулятаДля наглядного представления вариационного ряда большое значение имеют его графические изображения. Графически вариационный ряд может быть изображен в виде полигона, гистограммы и кумуляты. Полигон распределения (дословно — многоугольник распределения) строится в прямоугольной системе координат. Величина признака откладывается на оси абсцисс, частоты или относительные частоты — по оси ординат. Чаще всего полигоны применяются для изображения дискретных вариационных рядов, но их можно применять также для интервальных рядов. В этом случае на оси абсцисс откладываются точки, соответствующие серединам данных интервалов. Гистограмма распределения строится аналогично полигону в прямоугольной системе координат. В отличие от полигона при построении гистограммы на оси абсцисс выбирают не точки, а отрезки, изображающие интервал, а вместо ординат, соответствующих частотам или относительным частотам отдельных вариант, строят прямоугольники с высотой, пропорциональной частотам или относительным частотам интервала. В случае интервалов различной длины гистограмма распределения строится, не по частотам или относительным частотам, а по плотности интервалов (абсолютной или относительной). При этом общая площадь гистограммы равна численности совокупности, если построение проводится по абсолютной плотности, или единице, если гистограмма построена по относительной плотности. Если соединить прямыми линиями середины верхних сторон прямоугольников, то получим полигоны распределения. Разбивая интервалы на несколько частей и исходя из того, что вся — площадь гистограммы должна остаться при этом неизменной, можно получить мелкоступенчатую гистограмму, которая при уменьшении величины интервала будет приближаться к плавной кривой, называемой кривой распределения. Пример 2. По данным примера и построить полигон распределения и гистограмму. Решение см. на рисунке 28. Кумулятивная кривая (кривая сумм — кумулята) получается при изображении вариационного ряда с накопленными частотами или относительными частотами в прямоугольной системе координат, Накопленная частота определенной варианты получается суммированием всех частот вариант, предшествующих данной, с частотой этой варианты. При построении кумуляты дискретного признака по оси абсцисс откладывают значения признака (варианты), Ординатами служат вертикальные отрезки, длина которых пропорциональна накопленной частоте или относительной частоте той или иной варианты. Соединением вершин ординат прямыми линиями получаем ломаную (кривую) кумуляту. При построении кумуляты интервального вариационного ряда нижней границе первого интервала соответствует частота, равная нулю, а верхней — вся частота интервала. Верхней границе второго интервала соответствует накопленная частота первых двух интервалов (т. е. сумма частот этих интервалов) и т. д. Верхней границе последнего (максимального) интервала соответствует накопленная частота, равная сумме всех частот. Пример 3. По данным примера 1 построить кумуляту распределения. Решение cм. на рисунке 29. Числовые характеристики выборкиВ качестве одной из важнейших характеристик вариационного ряда применяют среднюю величину. Математическая статистика различает несколько типов средних величин: арифметическую, геометрическую, гармоническую, квадратическую, кубическую и др. Все перечисленные типы средних могут быть рассчитаны для случаев, когда каждая из вариант вариационного ряда встречается только один раз (тогда средняя называется простой, или невзвешенной) и когда варианты или интервалы повторяются. При этом число повторений вариант или интервалов называют частотой, или статистическим весом, а среднюю, вычисленную с учетом статистического веса, — взвешенной средней. Для характеристики вариационного ряда один из перечисленных типов средних выбирается не произвольно, а в зависимости от особенностей изучаемого явления и цели, для которой среднее исчисляется. Практически при выборе того или иного типа средней следует исходить из принципа осмысленности результата при суммировании или при взвешивании. Только тогда средняя применена правильно, когда в результате взвешивания или суммирования получаются величины, имеющие реальный смысл. Обычно затруднения при выборе типа средней возникают лишь в использовании средней арифметической, или гармонической. Что же касается геометрической и квадратической средних, то их применение обусловлено особыми случаями (см. далее). Следует иметь в виду, что средняя только в том случае является обобщающей характеристикой, если она применяется к однородной совокупности. В' случае использования средней для неоднородных совокупностей можно прийти к неверным выводам. Научной основой статистического анализа является метод статистических группировок, т. е. расчленения совокупности на качественно однородные группы. Все указанные типы средних величин можно получить из формул степенной средней. Если имеются варианты При наличии соответствующих частот Здесь Средняя арифметическая получается из формулы степенной средней при подстановке незвешенная Средняя гармоническая получается при подстановке в формулу степенной средней значения незвешенная Средняя гармоническая вычисляется тогда, когда средняя предназначается для расчета сумм слагаемых, обратно пропорциональных величине данного признака, т. е. когда суммированию подлежат не сами варианты, а обратные им величины Средняя квадратическая получается из формулы степенной средней при подстановке незвешенная Средняя квадратическая используется только тогда, когда варианты представляют собой отклонения фактических величин от их средней арифметической или от заданной нормы. Средняя геометрическая получается из формулы степенной средней при предельном переходе незвешенная Вычисления средней геометрической в значительной мере упрощаются применением логарифмирования: незвешенная Таким образом, логарифм средней геометрической есть средняя арифметическая из логарифмов вариантов. Средняя геометрическая используется главным образом при изучении динамики. Средние коэффициенты и темпы роста рассчитывают по формулам средней геометрической. Если вычислить различные типы средних для одного и того же вариационного ряда, то числовые их значения будут различаться. При этом средние по своей величине расположатся в определенном порядке. Наименьшей из перечисленных средних окажется средняя гармоническая, затем геометрическая и т. д., наибольшей будет средняя квадратическая. При этом порядок возрастания средних определяется показателем степени z в формуле степенной средней. Так, при В качестве характеристики вариационного ряда используют медиану При расчете медианы интервального вариационного ряда сначала находят интервал, содержащий медиану, путем использования накопленных или относительных частот. Медианному интервалу соответствует первая из накопленных или относительных частот, превышающая половину всего объема совокупности. Для нахождения медианы при постоянстве плотности внутри интервала, содержащего медиану, используют формулу где Медиану можно определить также графически по кумуляте. Для этого последнюю ординату, пропорциональную сумме всех частот или относительных частот, делят пополам. Из полученной точки восстанавливают перпендикуляр до пересечения с кумулятой. Абсцисса точки пересечения — значение медианы (см. рис. 29). Это свойство медианы можно использовать при проектировании расположения трамвайных и троллейбусных остановок, бензоколонок и т. д. Пример 4. На шоссе длиной 100 км имеется 10 гаражей. Для проектирования строительства бензоколонки были собраны данные о числе предполагаемых поездок на заправку с каждого гаража. Результаты обследования приведены в таблице. Бензоколонку нужно поставить так, чтобы общий пробег машин на заправку был наименьшим. Решение. Вариант 1. Если бензоколонку поставить на середине шоссе, т. е. на 50-м километре (средняя арифметическая), то пробеги с учетом числа поездок составят: в одном направлении в противоположном Общий пробег в оба направления окажется равным 5390 км. Вариант 2. Уменьшения пробега можно достичь, если бензоколонку поставить на 63,85-м километре, т. е. на среднем участке шоссе с учетом числа поездок (средняя арифметическая взвешенная). В этом случае пробеги составят по 2475,75 км в оба направления, т. е. общий пробег составит 4951,5 км и окажется меньше, чем при первом варианте, на 438,5 км. Вариант 3. Наилучший результат, т. е. минимальный общий пробег, получим, если поставим бензоколонку на 78-м километре, что будет соответствовать медиане. Тогда пробеги составят 3820 км и 990 км. Общий пробег равен 4810 км, т. е. он оказался меньше, общих пробегов, рассчитанных по предыдущим вариантам. Модой где Вариационные ряды, в которых частоты вариант, равноотстоящих от средней, равны между собой, называются симметричными. Особенность симметричных вариационных рядов состоит в равенстве трех характеристик — средней арифметической, моды и медианы: (это необходимое условие симметричности вариационного ряда, но не достаточное). Вариационные ряды, в которых расположение вариант вокруг средней не одинаково, т. е. частоты по обе стороны от средней изменяются по-разному, называются асимметричными, или скошенными. Различают асимметрию — левостороннюю и правостороннюю. Средние величины, характеризуя вариационный ряд одним числом, не учитывают вариацию признака, между тем эта вариация существует. Для измерения вариации признака в математической статистике применяют ряд способов. Вариационный размах Вариационный размах представляет собой величину неустойчивую, чрезвычайно зависящую от случайных обстоятельств; применяется для приблизительной оценки вариации. Среднее линейное отклонение, или простое среднее отклонение (обозначается Средний квадрат отклонения, или дисперсия (обозначается Таким образом, дисперсия есть средняя арифметическая из квадратов отклонений вариант от их средней арифметической. Обобщающими характеристиками вариационных рядов являются моменты распределения. Характер распределения можно определить с помощью небольшого количества моментов. Средняя из k-х степеней отклонений вариант При расчете средних в качестве весов можно использовать частоты, относительные частоты или вероятности. При использовании в качестве весов частот или относительных частот моменты называются эмпирическими, а при использовании вероятностей — теоретическими. Порядок момента определяется величиной В зависимости от выбора постоянной величины 1. Если Тогда при при при при при и т.д. Практически используют моменты первых четырёх порядков. 2. Если 3. Если за постоянную величину Тогда при то есть центральный момент нулевого порядка, равный единице; при то есть центральный момент первого порядка равен нулю; при то есть центральный момент первого порядка равен дисперсии и служит мерой колеблемости признака; при в этом случае центральный момент третьего порядка служит мерой асимметрии распределения признака. Если распределение симметрично, то при получаем центральный момент четвёртого порядка. Коэффициентом асимметрии Если полигон вариационного ряда скошен, то есть одна из его ветвей начиная от вершины зримо короче другой, то такой ряд называется асимметричным. Эксцессом Кривые распределения, у которых
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
|
Часовой пояс: UTC + 3 часа [ Летнее время ] |